Systems Engineering Institute, People's Liberation Army, Academy of Military Sciences, Tianjin, 300161, China.
School of Life Sciences, Tiangong University, Tianjin, 300387, China.
Med Biol Eng Comput. 2024 Nov;62(11):3445-3458. doi: 10.1007/s11517-024-03143-7. Epub 2024 Jun 11.
The use of invasive mechanical ventilation (IMV) is crucial in rescuing patients with respiratory dysfunction. Accurately predicting the demand for IMV is vital for clinical decision-making. However, current techniques are invasive and challenging to implement in pre-hospital and emergency rescue settings. To address this issue, a real-time prediction method utilizing only non-invasive parameters was developed to forecast IMV demand in this study. The model introduced the concept of real-time warning and leveraged the advantages of machine learning and integrated methods, achieving an AUC value of 0.935 (95% CI 0.933-0.937). The AUC value for the multi-center validation using the AmsterdamUMCdb database was 0.727, surpassing the performance of traditional risk adjustment algorithms (OSI(oxygenation saturation index): 0.608, P/F(oxygenation index): 0.558). Feature weight analysis demonstrated that BMI, Gcsverbal, and age significantly contributed to the model's decision-making. These findings highlight the substantial potential of a machine learning real-time dynamic warning model that solely relies on non-invasive parameters to predict IMV demand. Such a model can provide technical support for predicting the need for IMV in pre-hospital and disaster scenarios.
在抢救呼吸功能障碍患者时,使用有创机械通气(IMV)至关重要。准确预测对 IMV 的需求对临床决策至关重要。然而,目前的技术具有侵入性,并且难以在院前和紧急救援环境中实施。为了解决这个问题,本研究开发了一种仅使用非侵入性参数的实时预测方法来预测 IMV 的需求。该模型引入了实时预警的概念,并利用机器学习和集成方法的优势,实现了 0.935(95%CI 0.933-0.937)的 AUC 值。使用 AmsterdamUMCdb 数据库进行的多中心验证的 AUC 值为 0.727,超过了传统风险调整算法的性能(OSI(氧合饱和度指数):0.608,P/F(氧合指数):0.558)。特征权重分析表明,BMI、Gcsverbal 和年龄对模型的决策有重要贡献。这些发现突出了一种仅依靠非侵入性参数预测 IMV 需求的机器学习实时动态预警模型的巨大潜力。该模型可为预测院前和灾害场景中对 IMV 的需求提供技术支持。