Suppr超能文献

基于多中心数据库集成的综合机器学习方法预测有创机械通气需求的智能预警系统

Intelligent alert system for predicting invasive mechanical ventilation needs via noninvasive parameters: employing an integrated machine learning method with integration of multicenter databases.

机构信息

Systems Engineering Institute, People's Liberation Army, Academy of Military Sciences, Tianjin, 300161, China.

School of Life Sciences, Tiangong University, Tianjin, 300387, China.

出版信息

Med Biol Eng Comput. 2024 Nov;62(11):3445-3458. doi: 10.1007/s11517-024-03143-7. Epub 2024 Jun 11.

Abstract

The use of invasive mechanical ventilation (IMV) is crucial in rescuing patients with respiratory dysfunction. Accurately predicting the demand for IMV is vital for clinical decision-making. However, current techniques are invasive and challenging to implement in pre-hospital and emergency rescue settings. To address this issue, a real-time prediction method utilizing only non-invasive parameters was developed to forecast IMV demand in this study. The model introduced the concept of real-time warning and leveraged the advantages of machine learning and integrated methods, achieving an AUC value of 0.935 (95% CI 0.933-0.937). The AUC value for the multi-center validation using the AmsterdamUMCdb database was 0.727, surpassing the performance of traditional risk adjustment algorithms (OSI(oxygenation saturation index): 0.608, P/F(oxygenation index): 0.558). Feature weight analysis demonstrated that BMI, Gcsverbal, and age significantly contributed to the model's decision-making. These findings highlight the substantial potential of a machine learning real-time dynamic warning model that solely relies on non-invasive parameters to predict IMV demand. Such a model can provide technical support for predicting the need for IMV in pre-hospital and disaster scenarios.

摘要

在抢救呼吸功能障碍患者时,使用有创机械通气(IMV)至关重要。准确预测对 IMV 的需求对临床决策至关重要。然而,目前的技术具有侵入性,并且难以在院前和紧急救援环境中实施。为了解决这个问题,本研究开发了一种仅使用非侵入性参数的实时预测方法来预测 IMV 的需求。该模型引入了实时预警的概念,并利用机器学习和集成方法的优势,实现了 0.935(95%CI 0.933-0.937)的 AUC 值。使用 AmsterdamUMCdb 数据库进行的多中心验证的 AUC 值为 0.727,超过了传统风险调整算法的性能(OSI(氧合饱和度指数):0.608,P/F(氧合指数):0.558)。特征权重分析表明,BMI、Gcsverbal 和年龄对模型的决策有重要贡献。这些发现突出了一种仅依靠非侵入性参数预测 IMV 需求的机器学习实时动态预警模型的巨大潜力。该模型可为预测院前和灾害场景中对 IMV 的需求提供技术支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验