Suppr超能文献

基于深度学习的脑 CT 灌注时间截断校正。

Deep learning-based correction for time truncation in cerebral computed tomography perfusion.

机构信息

Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuo-ku, Niigata, 951-8518, Japan.

Institute for Research Administration, Niigata University, 8050 Ikarashi 2-No-cho, Nishi-ku, Niigata, 950-2181, Japan.

出版信息

Radiol Phys Technol. 2024 Sep;17(3):666-678. doi: 10.1007/s12194-024-00818-6. Epub 2024 Jun 11.

Abstract

Cerebral computed tomography perfusion (CTP) imaging requires complete acquisition of contrast bolus inflow and washout in the brain parenchyma; however, time truncation undoubtedly occurs in clinical practice. To overcome this issue, we proposed a three-dimensional (two-dimensional + time) convolutional neural network (CNN)-based approach to predict missing CTP image frames at the end of the series from earlier acquired image frames. Moreover, we evaluated three strategies for predicting multiple time points. Seventy-two CTP scans with 89 frames and eight slices from a publicly available dataset were used to train and test the CNN models capable of predicting the last 10 image frames. The prediction strategies were single-shot prediction, recursive multi-step prediction, and direct-recursive hybrid prediction.Single-shot prediction predicted all frames simultaneously, while recursive multi-step prediction used prior predictions as input for subsequent steps, and direct-recursive hybrid prediction employed separate models for each step with prior predictions as input for the next step. The accuracies of the predicted image frames were evaluated in terms of image quality, bolus shape, and clinical perfusion parameters. We found that the image quality metrics were superior when multiple CTP images were predicted simultaneously rather than recursively. The bolus shape also showed the highest correlation (r = 0.990, p < 0.001) and the lowest variance (95% confidence interval, -453.26-445.53) in the single-shot prediction. For all perfusion parameters, the single-shot prediction had the smallest absolute differences from ground truth. Our proposed approach can potentially minimize time truncation errors and support the accurate quantification of ischemic stroke.

摘要

脑计算机断层灌注 (CTP) 成像需要完整获取脑实质中的对比剂团注流入和洗脱;然而,在临床实践中,时间截断无疑会发生。为了解决这个问题,我们提出了一种基于三维(二维+时间)卷积神经网络 (CNN) 的方法,从早期获取的图像帧中预测序列末尾缺失的 CTP 图像帧。此外,我们评估了三种预测多个时间点的策略。我们使用来自公开数据集的 72 次 CTP 扫描和 89 个图像帧和 8 个切片来训练和测试能够预测最后 10 个图像帧的 CNN 模型。预测策略包括单步预测、递归多步预测和直接递归混合预测。单步预测同时预测所有帧,而递归多步预测将先前的预测作为后续步骤的输入,直接递归混合预测为每个步骤使用单独的模型,并将先前的预测作为下一个步骤的输入。预测图像帧的准确性是根据图像质量、团注形状和临床灌注参数来评估的。我们发现,同时预测多个 CTP 图像的图像质量指标优于递归预测。在单步预测中,团注形状也显示出最高的相关性(r=0.990,p<0.001)和最低的方差(95%置信区间,-453.26-445.53)。对于所有灌注参数,单步预测与真实值的绝对差异最小。我们提出的方法可以潜在地最小化时间截断误差,并支持对缺血性中风的准确量化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验