Li Guangdong, Xu Mingxiang, Chen Zhong
School of Physics, Southeast University, Nanjing, 211189, China.
Front Optoelectron. 2024 Jun 11;17(1):18. doi: 10.1007/s12200-024-00119-1.
The multiple absorber layer perovskite solar cells (PSCs) with charge transport layers-free (CTLs-free) have drawn widespread research interest due to their simplified architecture and promising photoelectric characteristics. Under the circumstances, the novel design of CTLs-free inversion PSCs with stable and nontoxic three absorber layers (triple CsBiI, single MASnI, double CsTiBr) as optical-harvester has been numerically simulated by utilizing wxAMPS simulation software and achieved high power conversion efficiency (PCE) of 14.8834%. This is owing to the innovative architecture of PSCs favors efficient transport and extraction of more holes and the slender band gap MASnI extends the absorption spectrum to the near-infrared periphery compared with the two absorber layers architecture of PSCs. Moreover, the performance of the device with p-type-CsBiI/p-type-MASnI/n-type-CsTiBr architecture is superior to the one with the p-type-CsBiI/n-type-MASnI/n-type-CsTiBr architecture due to less carrier recombination and higher carrier life time inside the absorber layers. The simulation results reveal that CsTiF double perovskite material stands out as the best alternative. Additionally, an excellent PCE of 21.4530% can be obtained with the thicker MASnI absorber layer thickness (0.4 µm). Lastly, the highest-performance photovoltaic devices (28.6193%) can be created with the optimized perovskite doping density of around E15 cm (CsBiI), E18 cm (MASnI), and 1.5E19 cm (CsTiBr). This work manifests that the proposed CTLs-free PSCs with multi-absorber layers shall be a relevant reference for forward applications in electro-optical and optoelectronic devices.
不含电荷传输层(CTLs-free)的多吸收层钙钛矿太阳能电池(PSC)因其简化的结构和良好的光电特性而引起了广泛的研究兴趣。在此情况下,利用wxAMPS模拟软件对具有稳定且无毒的三吸收层(三 CsBiI、单 MASnI、双 CsTiBr)作为光捕获器的不含 CTLs 的倒置 PSC 进行了新颖设计,并实现了 14.8834%的高功率转换效率(PCE)。这是由于 PSC 的创新结构有利于更有效地传输和提取更多空穴,并且与 PSC 的双吸收层结构相比,窄带隙 MASnI 将吸收光谱扩展到了近红外区域。此外,具有 p 型-CsBiI/p 型-MASnI/n 型-CsTiBr 结构的器件性能优于具有 p 型-CsBiI/n 型-MASnI/n 型-CsTiBr 结构的器件,这是因为吸收层内部的载流子复合较少且载流子寿命更长。模拟结果表明,CsTiF 双钙钛矿材料是最佳选择。此外,当 MASnI 吸收层厚度增加到 0.4 µm 时,可获得 21.4530%的优异 PCE。最后,通过优化钙钛矿掺杂密度(CsBiI 约为 E15 cm、MASnI 约为 E18 cm、CsTiBr 约为 1.5E19 cm),可以制造出性能最高的光伏器件(28.6193%)。这项工作表明,所提出的不含 CTLs 的多吸收层 PSC 对于电光和光电器件的实际应用具有重要的参考价值。