School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom.
Center for Conservation Genomics, Smithsonian's National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae104.
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
系统发育共生是指宿主相关微生物组组成与宿主系统发育之间的联系。这种模式可以通过宿主特征、栖息地偏好、饮食的进化以及宿主和微生物的共同多样化而产生。理解系统发育共生的驱动因素对于模拟疾病-微生物组相互作用以及在多宿主系统中操纵微生物组至关重要。本研究在评估真菌病原体蛙壶菌(Batrachochytrium dendrobatidis,Bd)感染的同时,量化了阿巴拉契亚蝾螈皮肤中的系统发育共生,同时考虑了环境微生物组暴露情况。我们采样了十种蝾螈物种,代表了超过 1.5 亿年的进化分歧,评估了它们的 Bd 感染状况,并分析了它们的皮肤和环境微生物组。我们的研究结果显示出明显的系统发育共生信号,而局部环境微生物组、气候、地理和 Bd 感染负荷的影响较小。宿主-微生物共进化并不明显,这表明这种影响源于影响微生物组组装的宿主特征的进化。Bd 感染与宿主系统发育和 Bd 抑制性细菌菌株的丰度相关,这表明蝾螈宿主与其皮肤微生物组之间的长期进化动态会影响病原体的当前分布,以及与栖息地相关的暴露风险。五种 Bd 抑制性细菌菌株表现出不寻常的广谱性:出现在大多数宿主物种和栖息地中。这些广谱菌株可能会增加益生菌操纵定植和在宿主中持续存在的可能性。我们的研究结果强调了宿主-微生物组生态进化动态对环境健康和疾病结果的重大影响。