Suppr超能文献

特异性:一个用于分析特征对环境变量和高维变量特异性的R包,应用于微生物群落物种数据。

specificity: an R package for analysis of feature specificity to environmental and higher dimensional variables, applied to microbiome species data.

作者信息

Darcy John L, Amend Anthony S, Swift Sean O I, Sommers Pacifica S, Lozupone Catherine A

机构信息

Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA.

School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.

出版信息

Environ Microbiome. 2022 Jun 25;17(1):34. doi: 10.1186/s40793-022-00426-0.

Abstract

BACKGROUND

Understanding the factors that influence microbes' environmental distributions is important for determining drivers of microbial community composition. These include environmental variables like temperature and pH, and higher-dimensional variables like geographic distance and host species phylogeny. In microbial ecology, "specificity" is often described in the context of symbiotic or host parasitic interactions, but specificity can be more broadly used to describe the extent to which a species occupies a narrower range of an environmental variable than expected by chance. Using a standardization we describe here, Rao's (Theor Popul Biol, 1982. https://doi.org/10.1016/0040-5809(82)90004-1, Sankhya A, 2010. https://doi.org/10.1007/s13171-010-0016-3 ) Quadratic Entropy can be conveniently applied to calculate specificity of a feature, such as a species, to many different environmental variables.

RESULTS

We present our R package specificity for performing the above analyses, and apply it to four real-life microbial data sets to demonstrate its application. We found that many fungi within the leaves of native Hawaiian plants had strong specificity to rainfall and elevation, even though these variables showed minimal importance in a previous analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed that many bacteria have specificity to co-occurring algal community composition. Similarly, in the human gut microbiome, many bacteria showed specificity to the composition of bile acids. Finally, our analysis of the Earth Microbiome Project data set showed that most bacteria show strong ontological specificity to sample type. Our software performed as expected on synthetic data as well.

CONCLUSIONS

specificity is well-suited to analysis of microbiome data, both in synthetic test cases, and across multiple environment types and experimental designs. The analysis and software we present here can reveal patterns in microbial taxa that may not be evident from a community-level perspective. These insights can also be visualized and interactively shared among researchers using specificity's companion package, specificity.shiny.

摘要

背景

了解影响微生物环境分布的因素对于确定微生物群落组成的驱动因素至关重要。这些因素包括温度和pH等环境变量,以及地理距离和宿主物种系统发育等高维变量。在微生物生态学中,“特异性”通常在共生或宿主寄生相互作用的背景下描述,但特异性可以更广泛地用于描述一个物种占据比随机预期更窄的环境变量范围的程度。使用我们在此描述的标准化方法,Rao的二次熵(Theor Popul Biol,1982。https://doi.org/10.1016/0040-5809(82)90004-1,Sankhya A,2010。https://doi.org/10.1007/s13171-010-0016-3)可以方便地用于计算一个特征(如一个物种)对许多不同环境变量的特异性。

结果

我们展示了用于执行上述分析的R包“specificity”,并将其应用于四个实际的微生物数据集以证明其应用。我们发现,夏威夷本土植物叶片内的许多真菌对降雨和海拔具有很强的特异性,尽管这些变量在先前对真菌β多样性的分析中显示出最小的重要性。在南极冰尘洞,我们的工具显示许多细菌对共生藻类群落组成具有特异性。同样,在人类肠道微生物组中,许多细菌对胆汁酸的组成具有特异性。最后,我们对地球微生物组计划数据集的分析表明,大多数细菌对样本类型表现出很强的本体特异性。我们的软件在合成数据上也表现如预期。

结论

“specificity”非常适合微生物组数据的分析,无论是在合成测试案例中,还是在多种环境类型和实验设计中。我们在此展示的分析和软件可以揭示微生物分类群中的模式,这些模式从群落水平的角度可能并不明显。这些见解也可以使用“specificity”的配套包“specificity.shiny”在研究人员之间进行可视化和交互式共享。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd08/9233361/1ca87c5a9170/40793_2022_426_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验