了解扰动设计对于准确推断基因调控网络至关重要。
Knowledge of the perturbation design is essential for accurate gene regulatory network inference.
机构信息
Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden.
Center for Developmental Genetics, New York University, New York, USA.
出版信息
Sci Rep. 2022 Oct 3;12(1):16531. doi: 10.1038/s41598-022-19005-x.
The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental and internal cues. Two distinct classes of methods are used to infer regulatory interactions from gene expression: those that only use observed changes in gene expression, and those that use both the observed changes and the perturbation design, i.e. the targets used to cause the changes in gene expression. Considering that the GRN by definition converts input cues to changes in gene expression, it may be conjectured that the latter methods would yield more accurate inferences but this has not previously been investigated. To address this question, we evaluated a number of popular GRN inference methods that either use the perturbation design or not. For the evaluation we used targeted perturbation knockdown gene expression datasets with varying noise levels generated by two different packages, GeneNetWeaver and GeneSpider. The accuracy was evaluated on each dataset using a variety of measures. The results show that on all datasets, methods using the perturbation design matrix consistently and significantly outperform methods not using it. This was also found to be the case on a smaller experimental dataset from E. coli. Targeted gene perturbations combined with inference methods that use the perturbation design are indispensable for accurate GRN inference.
基因调控网络 (GRN) 响应环境和内部信号执行遗传程序。有两种不同的方法可用于从基因表达推断调控相互作用:仅使用基因表达变化的那些方法,以及同时使用观察到的变化和扰动设计的那些方法,即用于引起基因表达变化的目标。考虑到 GRN 从定义上转换输入提示为基因表达的变化,可以推测后者的方法会产生更准确的推断,但这尚未得到研究。为了解决这个问题,我们评估了一些流行的 GRN 推断方法,这些方法要么使用扰动设计,要么不使用。对于评估,我们使用了由两个不同的软件包 GeneNetWeaver 和 GeneSpider 生成的具有不同噪声水平的靶向扰动基因表达数据集。使用各种指标在每个数据集上评估准确性。结果表明,在所有数据集上,使用扰动设计矩阵的方法始终优于不使用它的方法。在来自大肠杆菌的较小实验数据集上也是如此。靶向基因扰动与使用扰动设计的推断方法相结合,对于准确的 GRN 推断是不可或缺的。