Pušnik Žiga, Mraz Miha, Zimic Nikolaj, Moškon Miha
University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia.
Heliyon. 2022 Aug 9;8(8):e10222. doi: 10.1016/j.heliyon.2022.e10222. eCollection 2022 Aug.
Boolean descriptions of gene regulatory networks can provide an insight into interactions between genes. Boolean networks hold predictive power, are easy to understand, and can be used to simulate the observed networks in different scenarios. We review fundamental and state-of-the-art methods for inference of Boolean networks. We introduce a methodology for a straightforward evaluation of Boolean inference approaches based on the generation of evaluation datasets, application of selected inference methods, and evaluation of performance measures to guide the selection of the best method for a given inference problem. We demonstrate this procedure on inference methods REVEAL (REVerse Engineering ALgorithm), Best-Fit Extension, MIBNI (Mutual Information-based Boolean Network Inference), GABNI (Genetic Algorithm-based Boolean Network Inference) and ATEN (AND/OR Tree ENsemble algorithm), which infers Boolean descriptions of gene regulatory networks from discretised time series data. Boolean inference approaches tend to perform better in terms of dynamic accuracy, and slightly worse in terms of structural correctness. We believe that the proposed methodology and provided guidelines will help researchers to develop Boolean inference approaches with a good predictive capability while maintaining structural correctness and biological relevance.
基因调控网络的布尔描述能够深入洞察基因之间的相互作用。布尔网络具有预测能力,易于理解,可用于模拟不同场景下观察到的网络。我们回顾了用于推断布尔网络的基础方法和最新方法。我们介绍了一种方法,该方法基于评估数据集的生成、所选推断方法的应用以及性能指标的评估,对布尔推断方法进行直接评估,以指导为给定推断问题选择最佳方法。我们在推断方法REVEAL(逆向工程算法)、最佳拟合扩展、MIBNI(基于互信息的布尔网络推断)、GABNI(基于遗传算法的布尔网络推断)和ATEN(与/或树集成算法)上演示了此过程,这些方法从离散时间序列数据推断基因调控网络的布尔描述。布尔推断方法在动态准确性方面往往表现更好,而在结构正确性方面稍差。我们相信,所提出的方法和提供的指导方针将帮助研究人员开发出具有良好预测能力,同时保持结构正确性和生物学相关性的布尔推断方法。