Suppr超能文献

保守和辅助双组分调节系统的相互调节和相互作用协调铜抗性。

Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance.

机构信息

University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France.

出版信息

PLoS Genet. 2024 Jun 11;20(6):e1011325. doi: 10.1371/journal.pgen.1011325. eCollection 2024 Jun.

Abstract

Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.

摘要

细菌利用多种策略和分子机制来维持铜的体内平衡并应对其毒性作用。一些提供铜抗性的遗传元件是通过水平基因转移获得的;然而,对于它们是如何被控制和整合到中央调控网络中的,我们知之甚少。在这里,我们研究了铜响应系统在铜绿假单胞菌临床分离株中的两个,并解析了其调控和交叉调控机制。为此,我们结合了诱变、转录融合分析和铜敏感性表型。我们的结果表明,辅助 CusRS 双组分系统 (TCS) 对铜作出响应,并激活其自身表达和相邻的九个基因操纵子 (pcoA2 操纵子) 的表达,以提供对细胞外铜水平升高的抗性。相同的基因座也被发现受到两个核心基因组编码 TCSs 的调控-铜响应的 CopRS 和锌响应的 CzcRS。尽管靶回文序列-ATTCATnnATGTAAT-对于三个响应调节剂是相同的,但转录结果不同。因此,取决于操纵子/调节剂对,结合可以导致不同的激活水平(从无到高),这些系统表现出相当大的可塑性。出乎意料的是,尽管经典的 CusRS 和非典型的 CopRS TCS 依赖于不同的信号机制(基于激酶的与基于磷酸酶的),我们在没有同源感觉激酶的情况下发现了交叉对话。这种交叉对话发生在这两个独立系统的蛋白质之间。cusRS-pcoA2 基因座是整合和共轭元件的一部分,在其他铜绿假单胞菌菌株中发现了该基因座,其表达可以在适当的条件下提供铜抗性。本文介绍的结果说明了获得的遗传元件如何成为内源性调控网络的一部分,提供了生理优势。它们还突出了辅助调节蛋白通过干扰核心调节蛋白而产生更广泛影响的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716e/11195947/a9d71d698b9d/pgen.1011325.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验