Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2314262121. doi: 10.1073/pnas.2314262121. Epub 2024 Jun 11.
The emergence of SARS-CoV-2 variants with increased fitness has had a strong impact on the epidemiology of COVID-19, with the higher effective reproduction number of the viral variants leading to new epidemic waves. Tracking such variants and their genetic signatures, using data collected through genomic surveillance, is therefore crucial for forecasting likely surges in incidence. Current methods of estimating fitness advantages of variants rely on tracking the changing proportion of a particular lineage over time, but describing successful lineages in a rapidly evolving viral population is a difficult task. We propose a method of estimating fitness gains directly from nucleotide information generated by genomic surveillance, without a priori assigning isolates to lineages from phylogenies, based solely on the abundance of single nucleotide polymorphisms (SNPs). The method is based on mapping changes in the genetic population structure over time. Changes in the abundance of SNPs associated with periods of increasing fitness allow for the unbiased discovery of new variants, thereby obviating a deliberate lineage assignment and phylogenetic inference. We conclude that the method provides a fast and reliable way to estimate fitness advantages of variants without the need for a priori assigning isolates to lineages.
SARS-CoV-2 变异株的出现增加了其适应性,对 COVID-19 的流行病学产生了强烈影响,病毒变异株更高的有效繁殖数导致了新的疫情浪潮。因此,利用通过基因组监测收集的数据跟踪这些变异株及其遗传特征对于预测发病率的可能激增至关重要。目前,估计变异株适应性优势的方法依赖于跟踪特定谱系随时间的变化比例,但在快速进化的病毒群体中描述成功的谱系是一项艰巨的任务。我们提出了一种从基因组监测生成的核苷酸信息中直接估计适应性增益的方法,无需事先根据系统发育将分离株分配到谱系中,而仅基于单核苷酸多态性 (SNP) 的丰度。该方法基于随时间推移映射遗传种群结构的变化。与适应性增加时期相关的 SNP 丰度的变化允许对新变异株进行无偏发现,从而避免了故意的谱系分配和系统发育推断。我们的结论是,该方法提供了一种快速可靠的方法来估计变异株的适应性优势,而无需事先将分离株分配到谱系中。