Suppr超能文献

幼虫的认知极限:条件抑制、感觉前条件作用和二阶条件作用的测试。

Cognitive limits of larval : testing for conditioned inhibition, sensory preconditioning, and second-order conditioning.

机构信息

Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.

Department of Genetics, Faculty of Agriculture, Tanta University, 31111 Tanta, Egypt.

出版信息

Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053726.122. Print 2024 May.

Abstract

larvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larval for their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning in larvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larval .

摘要

幼虫是研究先天和简单形式的学习行为机制的成熟模型系统。它们的神经元数量比成年苍蝇少约 10 倍,正是由于它们的神经元总数较少,才能够以突触分辨率对其大脑进行电子显微镜重建。关于蘑菇体,这是昆虫中许多形式的联想学习的中央大脑结构,事实证明,以前有超过一半的突触连接类别被忽视了。理解这些随后在成年苍蝇中得到证实的电路基元的功能是当前一个重要的研究课题。在这方面,我们在三个任务中测试幼虫的认知能力,这些任务的特征比以前研究的任务更为复杂。我们的数据为(i)条件抑制提供了证据,这与以前在成年苍蝇和蜜蜂中报告的情况相同。然而,与在成年苍蝇和蜜蜂中描述的情况不同,我们的数据并没有为(ii)感觉前条件作用或(iii)幼虫的二阶条件作用提供证据。我们讨论了我们实验的方法学特征以及幼虫大脑组织的四个具体方面,这些方面可能解释了为什么这两种形式的学习在成年苍蝇和蜜蜂中观察到,而在幼虫中没有观察到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd7e/11199949/cc5ffde0822b/LM053726Sen_F1.jpg

相似文献

2
Switch-like and persistent memory formation in individual .
Elife. 2021 Oct 12;10:e70317. doi: 10.7554/eLife.70317.
3
Drosophila larvae form appetitive and aversive associative memory in response to thermal conditioning.
PLoS One. 2024 Sep 24;19(9):e0303955. doi: 10.1371/journal.pone.0303955. eCollection 2024.
4
Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval .
J Neurosci. 2023 Nov 1;43(44):7393-7428. doi: 10.1523/JNEUROSCI.2310-22.2023. Epub 2023 Sep 21.
5
The role of dopamine in Drosophila larval classical olfactory conditioning.
PLoS One. 2009 Jun 12;4(6):e5897. doi: 10.1371/journal.pone.0005897.
6
7
Connectomics and function of a memory network: the mushroom body of larval Drosophila.
Curr Opin Neurobiol. 2019 Feb;54:146-154. doi: 10.1016/j.conb.2018.10.007. Epub 2018 Oct 24.
8
Context and occasion setting in Drosophila visual learning.
Learn Mem. 2006 Sep-Oct;13(5):618-28. doi: 10.1101/lm.318606.
10
Maggot learning and Synapsin function.
J Exp Biol. 2013 Mar 15;216(Pt 6):939-51. doi: 10.1242/jeb.076208.

引用本文的文献

1
What do the mushroom bodies do for the insect brain? Twenty-five years of progress.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053827.123. Print 2024 May.
2
Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva.
iScience. 2023 Dec 26;27(1):108640. doi: 10.1016/j.isci.2023.108640. eCollection 2024 Jan 19.

本文引用的文献

1
Reinforcement expectation in the honeybee (): Can downshifts in reinforcement show conditioned inhibition?
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053915.124. Print 2024 May.
2
Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva.
iScience. 2023 Dec 26;27(1):108640. doi: 10.1016/j.isci.2023.108640. eCollection 2024 Jan 19.
3
Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval .
J Neurosci. 2023 Nov 1;43(44):7393-7428. doi: 10.1523/JNEUROSCI.2310-22.2023. Epub 2023 Sep 21.
4
Multisensory learning binds neurons into a cross-modal memory engram.
Nature. 2023 May;617(7962):777-784. doi: 10.1038/s41586-023-06013-8. Epub 2023 Apr 26.
5
The connectome of an insect brain.
Science. 2023 Mar 10;379(6636):eadd9330. doi: 10.1126/science.add9330.
7
Higher-order unimodal olfactory sensory preconditioning in .
Elife. 2022 Sep 21;11:e79107. doi: 10.7554/eLife.79107.
8
The neuronal building blocks of the navigational toolkit in the central complex of insects.
Curr Opin Insect Sci. 2023 Feb;55:100972. doi: 10.1016/j.cois.2022.100972. Epub 2022 Sep 17.
9
An incentive circuit for memory dynamics in the mushroom body of .
Elife. 2022 Apr 1;11:e75611. doi: 10.7554/eLife.75611.
10
Information flow, cell types and stereotypy in a full olfactory connectome.
Elife. 2021 May 25;10:e66018. doi: 10.7554/eLife.66018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验