Suppr超能文献

蛆虫学习与突触素功能。

Maggot learning and Synapsin function.

机构信息

Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, Brenneckestrasse 6, 39118 Magdeburg, Germany.

出版信息

J Exp Biol. 2013 Mar 15;216(Pt 6):939-51. doi: 10.1242/jeb.076208.

Abstract

Drosophila larvae are focused on feeding and have few neurons. Within these bounds, however, there still are behavioural degrees of freedom. This review is devoted to what these elements of flexibility are, and how they come about. Regarding odour-food associative learning, the emerging working hypothesis is that when a mushroom body neuron is activated as a part of an odour-specific set of mushroom body neurons, and coincidently receives a reinforcement signal carried by aminergic neurons, the AC-cAMP-PKA cascade is triggered. One substrate of this cascade is Synapsin, and therefore this review features a general and comparative discussion of Synapsin function. Phosphorylation of Synapsin ensures an alteration of synaptic strength between this mushroom body neuron and its target neuron(s). If the trained odour is encountered again, the pattern of mushroom body neurons coding this odour is activated, such that their modified output now allows conditioned behaviour. However, such an activated memory trace does not automatically cause conditioned behaviour. Rather, in a process that remains off-line from behaviour, the larvae compare the value of the testing situation (based on gustatory input) with the value of the odour-activated memory trace (based on mushroom body output). The circuit towards appetitive conditioned behaviour is closed only if the memory trace suggests that tracking down the learned odour will lead to a place better than the current one. It is this expectation of a positive outcome that is the immediate cause of appetitive conditioned behaviour. Such conditioned search for reward corresponds to a view of aversive conditioned behaviour as conditioned escape from punishment, which is enabled only if there is something to escape from - much in the same way as we only search for things that are not there, and run for the emergency exit only when there is an emergency. One may now ask whether beyond 'value' additional information about reinforcement is contained in the memory trace, such as information about the kind and intensity of the reinforcer used. The Drosophila larva may allow us to develop satisfyingly detailed accounts of such mnemonic richness - if it exists.

摘要

果蝇幼虫专注于进食,神经元数量较少。然而,在这些限制内,仍然存在行为自由度。本综述致力于探讨这些灵活性元素是什么,以及它们是如何产生的。关于气味-食物联想学习,新兴的工作假设是,当一个蘑菇体神经元作为一组特定气味的蘑菇体神经元的一部分被激活,并且巧合地接收到由胺能神经元携带的强化信号时,AC-cAMP-PKA 级联被触发。这个级联的一个底物是突触素,因此本综述对突触素的功能进行了一般性和比较性的讨论。突触素的磷酸化确保了这个蘑菇体神经元与其靶神经元之间的突触强度发生改变。如果再次遇到训练过的气味,编码该气味的蘑菇体神经元的模式被激活,使得它们的修改后的输出现在允许条件行为。然而,这样一个激活的记忆痕迹不会自动导致条件行为。相反,在一个与行为脱线的过程中,幼虫将测试情境的价值(基于味觉输入)与气味激活的记忆痕迹的价值(基于蘑菇体输出)进行比较。只有当记忆痕迹表明追踪学习的气味将导致一个比当前位置更好的地方时,朝向食欲条件行为的回路才会关闭。正是这种对积极结果的期望,是食欲条件行为的直接原因。这种对奖励的条件搜索对应于对惩罚性条件行为的逃避的看法,只有在有东西可逃避的情况下才会发生,这与我们只搜索不存在的东西,只有在紧急情况下才会跑向紧急出口的方式非常相似。现在人们可能会问,除了“价值”之外,记忆痕迹中是否包含有关强化的其他信息,例如使用的强化物的种类和强度。如果存在的话,果蝇幼虫可能会让我们对这种记忆丰富性发展出令人满意的详细描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验