Siemenn Alexander E, Aissi Eunice, Sheng Fang, Tiihonen Armi, Kavak Hamide, Das Basita, Buonassisi Tonio
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA.
Department of Applied Physics, Aalto University, Otakaari 24, Espoo, 02150, Finland.
Nat Commun. 2024 Jun 11;15(1):4654. doi: 10.1038/s41467-024-48768-2.
High-throughput materials synthesis methods, crucial for discovering novel functional materials, face a bottleneck in property characterization. These high-throughput synthesis tools produce 10 samples per hour using ink-based deposition while most characterization methods are either slow (conventional rates of 10 samples per hour) or rigid (e.g., designed for standard thin films), resulting in a bottleneck. To address this, we propose automated characterization (autocharacterization) tools that leverage adaptive computer vision for an 85x faster throughput compared to non-automated workflows. Our tools include a generalizable composition mapping tool and two scalable autocharacterization algorithms that: (1) autonomously compute the band gaps of 200 compositions in 6 minutes, and (2) autonomously compute the environmental stability of 200 compositions in 20 minutes, achieving 98.5% and 96.9% accuracy, respectively, when benchmarked against domain expert manual evaluation. These tools, demonstrated on the formamidinium (FA) and methylammonium (MA) mixed-cation perovskite system FAMAPbI, 0 ≤ x ≤ 1, significantly accelerate the characterization process, synchronizing it closer to the rate of high-throughput synthesis.
高通量材料合成方法对于发现新型功能材料至关重要,但在性能表征方面面临瓶颈。这些高通量合成工具使用基于墨水的沉积方式每小时可生产10个样品,而大多数表征方法要么速度慢(传统速度为每小时10个样品),要么缺乏灵活性(例如,专为标准薄膜设计),从而导致了瓶颈。为了解决这个问题,我们提出了自动化表征(自动表征)工具,与非自动化工作流程相比,该工具利用自适应计算机视觉实现了快85倍的通量。我们的工具包括一个可推广的成分映射工具和两种可扩展的自动表征算法,它们能够:(1)在6分钟内自主计算200种成分的带隙,(2)在20分钟内自主计算200种成分的环境稳定性,与领域专家手动评估相比,准确率分别达到98.5%和96.9%。这些工具在甲脒(FA)和甲基铵(MA)混合阳离子钙钛矿体系FAMAPbI(0≤x≤1)上得到了验证,显著加快了表征过程,使其更接近高通量合成的速度。