Siemenn Alexander E, Das Basita, Ji Kangyu, Sheng Fang, Buonassisi Tonio
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Sci Adv. 2025 Jul 4;11(27):eadw7071. doi: 10.1126/sciadv.adw7071.
Integrating robotically driven contact-based material characterization techniques into self-driving laboratories can enhance measurement quality, reliability, and throughput. While deep learning models support robust autonomy, current methods lack reliable pixel-precision positioning and require extensive labeled data. To overcome these challenges, we propose an approach for building self-supervised autonomy into contact-based robotic systems that teach the robot to follow domain expert measurement principles at high throughputs. We demonstrate the performance of this approach by autonomously driving a 4-DOF robotic probe for 24 hours to characterize semiconductor photoconductivity at 3025 uniquely predicted poses across a gradient of drop-casted perovskite film compositions, achieving throughputs of more than 125 measurements per hour. Spatially mapping photoconductivity onto each drop-casted film reveals compositional trends and regions of inhomogeneity, valuable for identifying manufacturing defects. With this self-supervised neural network-driven robotic system, we enable high-precision and reliable automation of contact-based characterization techniques at high throughputs, thereby allowing measurement of previously inaccessible yet important semiconductor properties for self-driving laboratories.
将基于接触的机器人驱动材料表征技术集成到自动驾驶实验室中,可以提高测量质量、可靠性和通量。虽然深度学习模型支持强大的自主性,但当前方法缺乏可靠的像素级精确定位,并且需要大量标记数据。为了克服这些挑战,我们提出了一种在基于接触的机器人系统中构建自我监督自主性的方法,该方法能让机器人以高吞吐量遵循领域专家的测量原则。我们通过自主驱动一个4自由度机器人探针24小时,在不同滴铸钙钛矿薄膜成分梯度下,以独特预测的3025个姿态表征半导体光电导率,实现每小时超过125次测量的通量,展示了这种方法的性能。将光电导率空间映射到每个滴铸薄膜上,揭示了成分趋势和不均匀区域,这对于识别制造缺陷很有价值。通过这个由自我监督神经网络驱动的机器人系统,我们实现了基于接触的表征技术在高吞吐量下的高精度和可靠自动化,从而能够测量自动驾驶实验室以前无法获取但很重要的半导体特性。