Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.
Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA.
Nature. 2023 May;617(7960):292-298. doi: 10.1038/s41586-023-05898-9. Epub 2023 May 10.
The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces. Whereas traditional combinatorial deposition methods can generate material libraries, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid-liquid or solid-solid phases. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.
新型材料的开发及其组成和微观结构的优化对于清洁能源和环境可持续性等下一代技术至关重要。然而,材料的发现和优化一直是一个令人沮丧的缓慢过程。爱迪生式的反复试验过程既耗时又浪费资源,尤其是与广阔的材料设计空间相比。虽然传统的组合沉积方法可以生成材料库,但这些方法受到材料选择有限和无法利用纳米材料合成重大突破的限制。在这里,我们报告了一种高通量组合打印方法,能够以微尺度空间分辨率制造具有成分梯度的材料。气溶胶相中的原位混合和打印允许即时调整大范围材料的混合比,这是在使用液体-液体或固体-固体相中的原料进行传统多材料打印时无法获得的重要特征。我们展示了各种高通量打印策略及其在组合掺杂、功能梯度和化学反应中的应用,实现了掺杂的硫属化物和成分梯度材料的材料探索,这些材料具有梯度性质。将添加剂制造的自上而下的设计自由度与对局部材料成分的自下而上的控制相结合的能力有望开发出传统制造方法无法获得的成分复杂的材料。