Suppr超能文献

气溶胶中组合材料的高通量打印。

High-throughput printing of combinatorial materials from aerosols.

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.

Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA.

出版信息

Nature. 2023 May;617(7960):292-298. doi: 10.1038/s41586-023-05898-9. Epub 2023 May 10.

Abstract

The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces. Whereas traditional combinatorial deposition methods can generate material libraries, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid-liquid or solid-solid phases. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.

摘要

新型材料的开发及其组成和微观结构的优化对于清洁能源和环境可持续性等下一代技术至关重要。然而,材料的发现和优化一直是一个令人沮丧的缓慢过程。爱迪生式的反复试验过程既耗时又浪费资源,尤其是与广阔的材料设计空间相比。虽然传统的组合沉积方法可以生成材料库,但这些方法受到材料选择有限和无法利用纳米材料合成重大突破的限制。在这里,我们报告了一种高通量组合打印方法,能够以微尺度空间分辨率制造具有成分梯度的材料。气溶胶相中的原位混合和打印允许即时调整大范围材料的混合比,这是在使用液体-液体或固体-固体相中的原料进行传统多材料打印时无法获得的重要特征。我们展示了各种高通量打印策略及其在组合掺杂、功能梯度和化学反应中的应用,实现了掺杂的硫属化物和成分梯度材料的材料探索,这些材料具有梯度性质。将添加剂制造的自上而下的设计自由度与对局部材料成分的自下而上的控制相结合的能力有望开发出传统制造方法无法获得的成分复杂的材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad1d/10172128/a39fb8a1e818/41586_2023_5898_Fig1_HTML.jpg

相似文献

1
High-throughput printing of combinatorial materials from aerosols.
Nature. 2023 May;617(7960):292-298. doi: 10.1038/s41586-023-05898-9. Epub 2023 May 10.
2
Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9101-9112. doi: 10.1021/acsami.0c18014. Epub 2021 Feb 12.
3
Tailoring Electrical Properties in Carbon Nanomaterial Patterns with Multimaterial Aerosol Jet Printing.
ACS Appl Mater Interfaces. 2023 Dec 13;15(49):57525-57532. doi: 10.1021/acsami.3c15088. Epub 2023 Dec 4.
4
High-throughput, combinatorial synthesis of multimetallic nanoclusters.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6316-6322. doi: 10.1073/pnas.1903721117. Epub 2020 Mar 10.
5
Multimaterial 3D Printing for Arbitrary Distribution with Nanoscale Resolution.
Nanomaterials (Basel). 2019 Aug 2;9(8):1108. doi: 10.3390/nano9081108.
6
Alloyed Thermoelectric PbTe-SnTe Films Formed via Aerosol Deposition.
ACS Comb Sci. 2019 Nov 11;21(11):753-759. doi: 10.1021/acscombsci.9b00145. Epub 2019 Oct 28.
7
High-Throughput Exploration of Triple-Cation Perovskites via All-in-One Compositionally-Graded Films.
Small. 2023 Oct;19(42):e2301037. doi: 10.1002/smll.202301037. Epub 2023 Jun 17.
8
Preparation of Smart Materials by Additive Manufacturing Technologies: A Review.
Materials (Basel). 2021 Oct 27;14(21):6442. doi: 10.3390/ma14216442.
9
A Comprehensive Review on Combinatorial Film via High-Throughput Techniques.
Materials (Basel). 2023 Oct 15;16(20):6696. doi: 10.3390/ma16206696.
10
A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization.
Polymers (Basel). 2022 Jun 16;14(12):2449. doi: 10.3390/polym14122449.

引用本文的文献

1
Materials and device strategies to enhance spatiotemporal resolution in bioelectronics.
Nat Rev Mater. 2025 Jun;10(6):425-448. doi: 10.1038/s41578-025-00798-y. Epub 2025 May 1.
3
Controlling Droplet Evaporation in Aerosol Jet Printing to Understand and Mitigate Overspray.
Small Sci. 2025 Mar 18;5(7):2500069. doi: 10.1002/smsc.202500069. eCollection 2025 Jul.
4
New Directions for Thermoelectrics: A Roadmap from High-Throughput Materials Discovery to Advanced Device Manufacturing.
Small Sci. 2024 Apr 4;5(3):2300359. doi: 10.1002/smsc.202300359. eCollection 2025 Mar.
5
Aerosol Printing of 3D Conductive Microstructures via Precision Dot Modulation.
Small. 2025 Aug;21(31):e2504037. doi: 10.1002/smll.202504037. Epub 2025 Jun 5.
6
Programmable Metamaterials with Perforated Shell Group Supporting Versatile Information Processing.
Adv Sci (Weinh). 2025 Jun;12(23):e2417784. doi: 10.1002/advs.202417784. Epub 2025 Apr 9.
7
Autonomous Aerosol and Plasma Co-Jet Printing of Metallic Devices at Ambient Temperature.
Small. 2025 Mar;21(11):e2409751. doi: 10.1002/smll.202409751. Epub 2025 Feb 16.
8
A Printed Microscopic Universal Gradient Interface for Super Stretchable Strain-Insensitive Bioelectronics.
Adv Mater. 2025 Mar;37(11):e2414203. doi: 10.1002/adma.202414203. Epub 2025 Feb 9.
10
Time Code for multifunctional 3D printhead controls.
Nat Commun. 2025 Jan 25;16(1):1035. doi: 10.1038/s41467-025-56140-1.

本文引用的文献

1
Additive manufacturing of micro-architected metals via hydrogel infusion.
Nature. 2022 Dec;612(7941):685-690. doi: 10.1038/s41586-022-05433-2. Epub 2022 Oct 20.
2
Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):9101-9112. doi: 10.1021/acsami.0c18014. Epub 2021 Feb 12.
3
High-resolution combinatorial patterning of functional nanoparticles.
Nat Commun. 2020 Nov 26;11(1):6002. doi: 10.1038/s41467-020-19771-0.
4
Colloidal Nanosurfactants for 3D Conformal Printing of 2D van der Waals Materials.
Adv Mater. 2020 Oct;32(39):e2003081. doi: 10.1002/adma.202003081. Epub 2020 Aug 26.
5
Voxelated soft matter via multimaterial multinozzle 3D printing.
Nature. 2019 Nov;575(7782):330-335. doi: 10.1038/s41586-019-1736-8. Epub 2019 Nov 13.
6
Thin-Film Processing Routes for Combinatorial Materials Investigations-A Review.
ACS Comb Sci. 2019 Jul 8;21(7):501-515. doi: 10.1021/acscombsci.9b00032. Epub 2019 Jun 19.
7
Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
Nat Commun. 2019 Apr 23;10(1):1853. doi: 10.1038/s41467-019-09827-1.
8
Hybrid Machine Learning Method to Determine the Optimal Operating Process Window in Aerosol Jet 3D Printing.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17994-18003. doi: 10.1021/acsami.9b02898. Epub 2019 May 2.
9
Multi-metal 4D printing with a desktop electrochemical 3D printer.
Sci Rep. 2019 Mar 8;9(1):3973. doi: 10.1038/s41598-019-40774-5.
10
Printed subthreshold organic transistors operating at high gain and ultralow power.
Science. 2019 Feb 15;363(6428):719-723. doi: 10.1126/science.aav7057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验