Suppr超能文献

通风条件下地下实验室氮气扩散行为的因子分析及遗传算法-反向传播人工神经网络预测

Factor analysis and GA-BP-ANN prediction of nitrogen diffusion behavior in underground laboratory under ventilation conditions.

作者信息

Li Baochun, Chi Minghua, Gao Minglun, Wang Licong, Xu Jinlong, Zeng Xiangguo

机构信息

China Construction Third Bureau Group Co., Ltd., Wuhan, 430064, People's Republic of China.

Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu, 610065, People's Republic of China.

出版信息

Sci Rep. 2024 Jun 11;14(1):13427. doi: 10.1038/s41598-024-63829-8.

Abstract

Nitrogen is widely used in various laboratories as a suppressive gas and a protective gas. Once nitrogen leaks and accumulates in a such confined space, it will bring serious threats to the experimental staff. Especially in underground tunnels or underground laboratories where there is no natural wind, the threat is more intense. In this work, the ventilation design factors and potential leakage factors are identified by taking the leakage and diffusion of a large liquid nitrogen tank in China Jinping Underground Laboratory (CJPL) as an example. Based on computational fluid dynamics (CFD) research, the effects of fresh air inlet position, fresh air velocity, exhaust outlet position, leakage hole position, leakage hole size, and leaked nitrogen mass flow rate on nitrogen diffusion behavior in specific environments are discussed in detail from the perspectives of nitrogen concentration field and nitrogen diffusion characteristics. The influencing factors are parameterized, and the Latin hypercube sampling (LHS) is used to uniformly sample within the specified range of each factor to obtain samples that can represent the whole sample space. The nitrogen concentration is measured by numerical value, and the nitrogen diffusion characteristics are measured by category. The GA-BP-ANN numerical regression and classification regression models for nitrogen concentration prediction and nitrogen diffusion characteristics prediction are established. By using various rating indicators to evaluate the performance of the trained model, it is found that models have high accuracy and recognition rate, indicating that it is effective in predicting and determining the concentration value and diffusion characteristics of nitrogen according to ventilation factors and potential leakage factors. The research results can provide a theoretical reference for the parametric design of the ventilation system.

摘要

氮气在各类实验室中被广泛用作抑制性气体和保护气体。一旦氮气泄漏并在这样的密闭空间中积聚,将给实验人员带来严重威胁。特别是在没有自然风的地下隧道或地下实验室中,这种威胁更为严重。在这项工作中,以中国锦屏地下实验室(CJPL)中一个大型液氮罐的泄漏与扩散为例,识别通风设计因素和潜在泄漏因素。基于计算流体动力学(CFD)研究,从氮气浓度场和氮气扩散特性的角度,详细讨论了新风入口位置、新风速度、排气口位置、泄漏孔位置、泄漏孔尺寸以及泄漏氮气质量流量对特定环境中氮气扩散行为的影响。对影响因素进行参数化处理,并使用拉丁超立方抽样(LHS)在每个因素的指定范围内进行均匀抽样,以获得能够代表整个样本空间的样本。通过数值测量氮气浓度,按类别测量氮气扩散特性。建立了用于氮气浓度预测和氮气扩散特性预测的GA - BP - ANN数值回归和分类回归模型。通过使用各种评级指标评估训练模型的性能,发现模型具有较高的精度和识别率,表明其在根据通风因素和潜在泄漏因素预测和确定氮气浓度值及扩散特性方面是有效的。研究结果可为通风系统的参数化设计提供理论参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25f2/11166958/3aa34fecfbdf/41598_2024_63829_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验