Suppr超能文献

利用机器学习预测生物炭对土壤重金属的固定作用。

Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning.

机构信息

Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.

出版信息

Environ Sci Technol. 2022 Apr 5;56(7):4187-4198. doi: 10.1021/acs.est.1c08302. Epub 2022 Mar 15.

Abstract

Biochar application is a promising strategy for the remediation of contaminated soil, while ensuring sustainable waste management. Biochar remediation of heavy metal (HM)-contaminated soil primarily depends on the properties of the soil, biochar, and HM. The optimum conditions for HM immobilization in biochar-amended soils are site-specific and vary among studies. Therefore, a generalized approach to predict HM immobilization efficiency in biochar-amended soils is required. This study employs machine learning (ML) approaches to predict the HM immobilization efficiency of biochar in biochar-amended soils. The nitrogen content in the biochar (0.3-25.9%) and biochar application rate (0.5-10%) were the two most significant features affecting HM immobilization. Causal analysis showed that the empirical categories for HM immobilization efficiency, in the order of importance, were biochar properties > experimental conditions > soil properties > HM properties. Therefore, this study presents new insights into the effects of biochar properties and soil properties on HM immobilization. This approach can help determine the optimum conditions for enhanced HM immobilization in biochar-amended soils.

摘要

生物炭的应用是一种有前途的污染土壤修复策略,同时确保了可持续的废物管理。生物炭修复重金属(HM)污染土壤主要取决于土壤、生物炭和 HM 的特性。在添加生物炭的土壤中固定 HM 的最佳条件是特定于地点的,并且在不同的研究中有所不同。因此,需要一种广义的方法来预测添加生物炭的土壤中 HM 的固定效率。本研究采用机器学习(ML)方法来预测生物炭在添加生物炭的土壤中固定 HM 的效率。生物炭中的氮含量(0.3-25.9%)和生物炭的应用率(0.5-10%)是影响 HM 固定的两个最重要的特征。因果分析表明,HM 固定效率的经验类别,按重要性顺序排列,为生物炭特性>实验条件>土壤特性>HM 特性。因此,本研究为生物炭特性和土壤特性对 HM 固定的影响提供了新的见解。这种方法可以帮助确定在添加生物炭的土壤中增强 HM 固定的最佳条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf34/8988308/412207e945f7/es1c08302_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验