Suppr超能文献

由2纳米厚的锗层种子层在硅上生长的相纯α-锡量子材料。

Phase-Pure α-Sn Quantum Material on Si Seeded by a 2 nm-Thick Ge Layer.

作者信息

Liu Shang, Li Shangda, Gardener Jules A, Akey Austin, Gao Xiaoxue, Wang Xiaoxin, Liu Jifeng

机构信息

Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA.

Center for Nanoscale Systems, Harvard University, Cambridge, MA, 02138, USA.

出版信息

Small Methods. 2024 Dec;8(12):e2400550. doi: 10.1002/smtd.202400550. Epub 2024 Jun 11.

Abstract

α-Sn, a new elemental topological quantum material, has drawn substantial attention lately. Unique transport properties and intriguing spintronics applications of α-Sn are demonstrated, resurrecting this material from its notorious "tin pest" infamy. With a diamond cubic crystal structure, group-IV α-Sn holds the potential for integrated topological quantum devices on Si. However, directly growing α-Sn on Si is still challenging due to the ≈20% lattice mismatch. Here, a new method is demonstrated to grow 200 nm-thick α-Sn microstructures on a 2 nm-thick Ge seed layer on Si substrate by physical vapor deposition. In situ Raman spectroscopy reveals that the as-deposited β-Sn melts upon rapid thermal annealing at 350-450 °C and solidifies to α-Sn after cooling back to room temperature, seeded by heterogeneous nucleation on the Ge layer. Cooling condition and HCl etching are tuned to achieve phase-pure α-Sn microstructures toward quantum devices. Approximately 1 at.% Ge is alloyed into α-Sn due to diffusion from the Ge seed layer, which helps stabilize α-Sn thermodynamically to facilitate device processing. A compressive strain is incorporated into these α-Sn microstructures, making them 3D topological Dirac semimetals for integrated quantum devices on Si.

摘要

α-Sn是一种新型的元素拓扑量子材料,近来备受关注。α-Sn展现出独特的输运特性和引人入胜的自旋电子学应用,使其从臭名昭著的“锡疫”声名中得以复兴。具有金刚石立方晶体结构的IV族α-Sn在硅基上集成拓扑量子器件方面具有潜力。然而,由于约20%的晶格失配,在硅上直接生长α-Sn仍然具有挑战性。在此,展示了一种新方法,通过物理气相沉积在硅衬底上2纳米厚的锗籽层上生长200纳米厚的α-Sn微结构。原位拉曼光谱表明,沉积态的β-Sn在350-450°C快速热退火时熔化,并在冷却回室温后凝固为α-Sn,由锗层上的异质形核引发。调整冷却条件和盐酸蚀刻以实现面向量子器件的纯相α-Sn微结构。由于从锗籽层扩散,约1原子%的锗合金化到α-Sn中,这有助于在热力学上稳定α-Sn以促进器件加工。这些α-Sn微结构中引入了压缩应变,使其成为用于硅基集成量子器件的三维拓扑狄拉克半金属。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验