Bhattacharjee Ananya, Zeng Yuchen, Xu Sarah Yi, Kulzhabayeva Dana, Ma Minyi, Kornfield Rachel, Ahmed Syed Ishtiaque, Mariakakis Alex, Czerwinski Mary P, Kuzminykh Anastasia, Liut Michael, Williams Joseph Jay
Computer Science, University of Toronto, Toronto, Ontario, Canada.
Psychology, University of Toronto, Toronto, Ontario, Canada.
Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642081. Epub 2024 May 11.
Traditional interventions for academic procrastination often fail to capture the nuanced, individual-specific factors that underlie them. Large language models (LLMs) hold immense potential for addressing this gap by permitting open-ended inputs, including the ability to customize interventions to individuals' unique needs. However, user expectations and potential limitations of LLMs in this context remain underexplored. To address this, we conducted interviews and focus group discussions with 15 university students and 6 experts, during which a technology probe for generating personalized advice for managing procrastination was presented. Our results highlight the necessity for LLMs to provide structured, deadline-oriented steps and enhanced user support mechanisms. Additionally, our results surface the need for an adaptive approach to questioning based on factors like busyness. These findings offer crucial design implications for the development of LLM-based tools for managing procrastination while cautioning the use of LLMs for therapeutic guidance.
传统的学术拖延干预措施往往无法捕捉到其背后细微的、因人而异的因素。大型语言模型(LLMs)通过允许开放式输入,包括根据个人独特需求定制干预措施的能力,在弥补这一差距方面具有巨大潜力。然而,在这种情况下,用户期望和大型语言模型的潜在局限性仍未得到充分探索。为了解决这个问题,我们对15名大学生和6名专家进行了访谈和焦点小组讨论,期间展示了一个用于生成管理拖延的个性化建议的技术探针。我们的结果强调了大型语言模型提供结构化的、以截止日期为导向的步骤以及增强用户支持机制的必要性。此外,我们的结果还表明需要一种基于忙碌程度等因素的适应性提问方法。这些发现为开发基于大型语言模型的拖延管理工具提供了关键的设计启示,同时也提醒人们在使用大型语言模型进行治疗指导时要谨慎。
Proc SIGCHI Conf Hum Factor Comput Syst. 2024-5
J Med Internet Res. 2024-12-27
DIS (Des Interact Syst Conf). 2025-7
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024-11
Ext Abstr Hum Factors Computing Syst. 2024-5
Nature. 2023-11
NPJ Digit Med. 2023-8-24
Nat Med. 2023-8
Proc SIGCHI Conf Hum Factor Comput Syst. 2023-4
Med Teach. 2023-6
Proc ACM Hum Comput Interact. 2022-11
Proc ACM Hum Comput Interact. 2019-11