文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

理解大语言模型在个性化和搭建策略以对抗学术拖延方面的作用。

Understanding the Role of Large Language Models in Personalizing and Scaffolding Strategies to Combat Academic Procrastination.

作者信息

Bhattacharjee Ananya, Zeng Yuchen, Xu Sarah Yi, Kulzhabayeva Dana, Ma Minyi, Kornfield Rachel, Ahmed Syed Ishtiaque, Mariakakis Alex, Czerwinski Mary P, Kuzminykh Anastasia, Liut Michael, Williams Joseph Jay

机构信息

Computer Science, University of Toronto, Toronto, Ontario, Canada.

Psychology, University of Toronto, Toronto, Ontario, Canada.

出版信息

Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642081. Epub 2024 May 11.


DOI:10.1145/3613904.3642081
PMID:38863598
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11166253/
Abstract

Traditional interventions for academic procrastination often fail to capture the nuanced, individual-specific factors that underlie them. Large language models (LLMs) hold immense potential for addressing this gap by permitting open-ended inputs, including the ability to customize interventions to individuals' unique needs. However, user expectations and potential limitations of LLMs in this context remain underexplored. To address this, we conducted interviews and focus group discussions with 15 university students and 6 experts, during which a technology probe for generating personalized advice for managing procrastination was presented. Our results highlight the necessity for LLMs to provide structured, deadline-oriented steps and enhanced user support mechanisms. Additionally, our results surface the need for an adaptive approach to questioning based on factors like busyness. These findings offer crucial design implications for the development of LLM-based tools for managing procrastination while cautioning the use of LLMs for therapeutic guidance.

摘要

传统的学术拖延干预措施往往无法捕捉到其背后细微的、因人而异的因素。大型语言模型(LLMs)通过允许开放式输入,包括根据个人独特需求定制干预措施的能力,在弥补这一差距方面具有巨大潜力。然而,在这种情况下,用户期望和大型语言模型的潜在局限性仍未得到充分探索。为了解决这个问题,我们对15名大学生和6名专家进行了访谈和焦点小组讨论,期间展示了一个用于生成管理拖延的个性化建议的技术探针。我们的结果强调了大型语言模型提供结构化的、以截止日期为导向的步骤以及增强用户支持机制的必要性。此外,我们的结果还表明需要一种基于忙碌程度等因素的适应性提问方法。这些发现为开发基于大型语言模型的拖延管理工具提供了关键的设计启示,同时也提醒人们在使用大型语言模型进行治疗指导时要谨慎。

相似文献

[1]
Understanding the Role of Large Language Models in Personalizing and Scaffolding Strategies to Combat Academic Procrastination.

Proc SIGCHI Conf Hum Factor Comput Syst. 2024-5

[2]
AI in Home Care-Evaluation of Large Language Models for Future Training of Informal Caregivers: Observational Comparative Case Study.

J Med Internet Res. 2025-4-28

[3]
A qualitative survey on perception of medical students on the use of large language models for educational purposes.

Adv Physiol Educ. 2025-3-1

[4]
Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models.

JMIR Med Educ. 2024-2-13

[5]
Assessing the Application of Large Language Models in Generating Dermatologic Patient Education Materials According to Reading Level: Qualitative Study.

JMIR Dermatol. 2024-5-16

[6]
Large Language Models in Worldwide Medical Exams: Platform Development and Comprehensive Analysis.

J Med Internet Res. 2024-12-27

[7]
Evaluating the Effectiveness of Large Language Models in Providing Patient Education for Chinese Patients With Ocular Myasthenia Gravis: Mixed Methods Study.

J Med Internet Res. 2025-4-10

[8]
Large language models (LLMs) in radiology exams for medical students: Performance and consequences.

Rofo. 2024-11-4

[9]
Quality of Answers of Generative Large Language Models Versus Peer Users for Interpreting Laboratory Test Results for Lay Patients: Evaluation Study.

J Med Internet Res. 2024-4-17

[10]
Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals.

J Med Internet Res. 2024-4-25

引用本文的文献

[1]
: Understanding User Perceptions of Personalized LLM-Enhanced Narrative Interventions.

DIS (Des Interact Syst Conf). 2025-7

[2]
Behavior Change Support Systems for Self-Treating Procrastination: Systematic Search in App Stores and Analysis of Motivational Design Archetypes.

J Med Internet Res. 2025-2-20

[3]
MindScape Study: Integrating LLM and Behavioral Sensing for Personalized AI-Driven Journaling Experiences.

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024-11

[4]
Contextual AI Journaling: Integrating LLM and Time Series Behavioral Sensing Technology to Promote Self-Reflection and Well-being using the MindScape App.

Ext Abstr Hum Factors Computing Syst. 2024-5

本文引用的文献

[1]
Role play with large language models.

Nature. 2023-11

[2]
Evaluating large language models on medical evidence summarization.

NPJ Digit Med. 2023-8-24

[3]
Large language models in medicine.

Nat Med. 2023-8

[4]
Large Language Models in Medical Education: Opportunities, Challenges, and Future Directions.

JMIR Med Educ. 2023-6-1

[5]
Investigating the Role of Context in the Delivery of Text Messages for Supporting Psychological Wellbeing.

Proc SIGCHI Conf Hum Factor Comput Syst. 2023-4

[6]
The next paradigm shift? ChatGPT, artificial intelligence, and medical education.

Med Teach. 2023-8

[7]
Aye, AI! ChatGPT passes multiple-choice family medicine exam.

Med Teach. 2023-6

[8]
: Translating Mental Health Principles into Real Life Through Story-Based Text Messages.

Proc ACM Hum Comput Interact. 2022-11

[9]
ChatGPT Is Shaping the Future of Medical Writing But Still Requires Human Judgment.

Radiology. 2023-4

[10]
"I think people are powerful": The Sociality of Individuals Managing Depression.

Proc ACM Hum Comput Interact. 2019-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索