Suppr超能文献

思维景观研究:整合大语言模型与行为感知以实现个性化人工智能驱动的日志记录体验。

MindScape Study: Integrating LLM and Behavioral Sensing for Personalized AI-Driven Journaling Experiences.

作者信息

Nepal Subigya, Pillai Arvind, Campbell William, Massachi Talie, Heinz Michael V, Kunwar Ashmita, Choi Eunsol Soul, Xu Xuhai, Kuc Joanna, Huckins Jeremy F, Holden Jason, Preum Sarah M, Depp Colin, Jacobson Nicholas, Czerwinski Mary P, Granholm Eric, Campbell Andrew T

机构信息

Dartmouth College, USA.

Colby College, USA.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Nov;8(4). doi: 10.1145/3699761. Epub 2024 Nov 21.

Abstract

Mental health concerns are prevalent among college students, highlighting the need for effective interventions that promote self-awareness and holistic well-being. MindScape explores a novel approach to AI-powered journaling by integrating passively collected behavioral patterns such as conversational engagement, sleep, and location with Large Language Models (LLMs). This integration creates a highly personalized and context-aware journaling experience, enhancing self-awareness and well-being by embedding behavioral intelligence into AI. We present an 8-week exploratory study with 20 college students, demonstrating the MindScape app's efficacy in enhancing positive affect (7%), reducing negative affect (11%), loneliness (6%), and anxiety and depression, with a significant week-over-week decrease in PHQ-4 scores (-0.25 coefficient). The study highlights the advantages of contextual AI journaling, with participants particularly appreciating the tailored prompts and insights provided by the MindScape app. Our analysis also includes a comparison of responses to AI-driven contextual versus generic prompts, participant feedback insights, and proposed strategies for leveraging contextual AI journaling to improve well-being on college campuses. By showcasing the potential of contextual AI journaling to support mental health, we provide a foundation for further investigation into the effects of contextual AI journaling on mental health and well-being.

摘要

心理健康问题在大学生中普遍存在,这凸显了采取有效干预措施以促进自我认知和整体幸福感的必要性。MindScape通过将被动收集的行为模式(如对话参与度、睡眠和位置)与大语言模型(LLMs)相结合,探索了一种新颖的人工智能驱动的日志记录方法。这种整合创造了一种高度个性化且情境感知的日志记录体验,通过将行为智能嵌入人工智能来增强自我认知和幸福感。我们对20名大学生进行了一项为期8周的探索性研究,证明了MindScape应用程序在增强积极情绪(7%)、减少消极情绪(11%)、孤独感(6%)以及焦虑和抑郁方面的有效性,PHQ-4得分每周显著下降(系数为-0.25)。该研究突出了情境人工智能日志记录的优势,参与者尤其赞赏MindScape应用程序提供的定制提示和见解。我们的分析还包括对人工智能驱动的情境提示与通用提示的回应比较、参与者反馈见解,以及利用情境人工智能日志记录改善大学校园幸福感的建议策略。通过展示情境人工智能日志记录对支持心理健康的潜力,我们为进一步研究情境人工智能日志记录对心理健康和幸福感的影响奠定了基础。

相似文献

10
CARE: towards customized assistive robot-based education.关爱:迈向基于定制辅助机器人的教育
Front Robot AI. 2025 Feb 21;12:1474741. doi: 10.3389/frobt.2025.1474741. eCollection 2025.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验