Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, China.
Front Cell Infect Microbiol. 2024 May 28;14:1414135. doi: 10.3389/fcimb.2024.1414135. eCollection 2024.
Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood.
In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses.
Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment.
Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.
棘阿米巴感染是一个严重的公共卫生问题,因此需要开发有效和安全的抗棘阿米巴化学疗法。多聚(ADP-核糖)聚合酶(PARPs)调控着大量的生物学过程,如 DNA 损伤修复、蛋白质降解和细胞凋亡。已经有多种 PARP 靶向化合物被批准用于癌症治疗。然而,将 PARP 抑制剂重新用于治疗棘阿米巴的情况了解甚少。
在本研究中,我们试图通过进行抗棘阿米巴功效测定、细胞生物学实验、生物信息学和转录组分析来填补这些知识空白。
利用棘阿米巴多聚(ADP-核糖)聚合酶(PARPs)的同源模型,对已批准药物进行分子对接,发现了三种潜在的抑制化合物:奥拉帕利、维那帕利和 AZ9482。特别是维那帕利的对接评分(-13.71)和预测的结合自由能(-89.28 kcal/mol)都更优,其次是 AZ9482,其对接评分为-13.20,结合自由能为-92.13 kcal/mol。值得注意的是,维那帕利中带正电荷的环丙基胺在结合口袋内建立了盐桥(通过 E535)和氢键(通过 N531)。相比之下,AZ9482 被周围的芳香族残基(包括 H625、Y652、Y659 和 Y670)很好地堆积。在评估滋养体活力时,AZ9482 通过抑制棘阿米巴 PARP 活性,表现出剂量和时间依赖性的抗滋养体作用,而奥拉帕利和维那帕利则没有。Annexin V-荧光素异硫氰酸酯/碘化丙啶凋亡检测显示,AZ9482 诱导滋养体坏死性细胞死亡,而不是凋亡。对用 AZ9482 处理的棘阿米巴滋养体进行转录组学分析,绘制了差异调节蛋白和基因图谱,发现 AZ9482 可快速上调滋养体中多种 DNA 损伤修复途径,同时显著下调几种毒力基因。分析与 DNA 损伤修复途径和无嘌呤/无嘧啶(AP)位点相关的基因表达表明,在 AZ9482 处理后,棘阿米巴滋养体中的 DNA 损伤效果和修复调节。
综上所述,AZ9482 作为一种结构独特的 PARP 抑制剂,为推进抗棘阿米巴药物研究提供了有希望的原型。