文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有荆芥(猫薄荷)的生物合成银纳米颗粒在大鼠切除伤口模型上的体内伤口愈合活性更强。

Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat.

作者信息

Sari Berfin Rumeysa, Yesilot Sukriye, Ozmen Ozlem, Aydin Acar Cigdem

机构信息

Department of Health and Biomedical Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.

Department of Nursing, Bucak School of Health, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.

出版信息

Biol Trace Elem Res. 2025 Mar;203(3):1502-1517. doi: 10.1007/s12011-024-04268-4. Epub 2024 Jun 12.


DOI:10.1007/s12011-024-04268-4
PMID:38865065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11872767/
Abstract

Silver nanoparticles were biosynthesized with Nepeta cataria plant extract. It was determined that the synthesized Nc-AgNPs gave a strong absorbance peak at 438 nm wavelength in the UV-vis spectrophotometer. SEM and TEM analyses of Nc-AgNPs showed that the synthesized nanoparticles had a spherical morphology. Based on XRD analysis, the average crystallite size of Nc-AgNPs was calculated at 15.74 nm. At the same time, EDS spectrum analysis exhibited dominant emission energy at 3 keV, indicative of Nc-AgNPs. Nc-AgNPs showed an inhibition zone of 12 nm in gram-negative Escherichia coli, 10 nm in gram-positive Enterococcus faecalis, and 11 nm in Staphylococcus aureus. Nc-AgNPs showed high antioxidant properties, with 63% at 5000 μg/mL. The wound-healing properties of Nc-AgNPs were evaluated in vivo in wound models created in a total of 20 Wistar albino male rats, divided into four groups. After 10 days of treatment, the highest wound closure rate was seen in the Nc-AgNP + Vaseline (Group IV) treatment group, at 94%. It was observed that Nc-AgNP + Vaseline nanoformulation significantly increased wound healing, similar to Silverdin®, and Vaseline alone supported healing but did not result in complete closure. Histopathological examination revealed an increase in mature Type 1 collagen in Group IV and positive control (Group II), with better collagen maturation in vehicle control (Group III) compared to negative control (Group I). Immunohistochemical analysis showed complete epithelialization in Group IV and Group II, with distinct cytokeratin expressions, while Group III exhibited mild expressions.

摘要

用荆芥植物提取物生物合成了银纳米颗粒。经测定,合成的Nc-AgNPs在紫外可见分光光度计中于438nm波长处有一个强吸收峰。对Nc-AgNPs的扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析表明,合成的纳米颗粒具有球形形态。基于X射线衍射(XRD)分析,计算出Nc-AgNPs的平均微晶尺寸为15.74nm。同时,能谱(EDS)分析显示在3keV处有主要发射能量,表明存在Nc-AgNPs。Nc-AgNPs在革兰氏阴性大肠杆菌中的抑菌圈为12nm,在革兰氏阳性粪肠球菌中为10nm,在金黄色葡萄球菌中为11nm。Nc-AgNPs表现出高抗氧化性能,在5000μg/mL时为63%。在总共20只Wistar白化雄性大鼠建立的伤口模型中对Nc-AgNPs的伤口愈合性能进行了体内评估,这些大鼠被分为四组。治疗10天后,在Nc-AgNP+凡士林(第四组)治疗组中观察到最高的伤口闭合率,为94%。观察到Nc-AgNP+凡士林纳米制剂显著促进伤口愈合,类似于Silverdin®,单独使用凡士林也能促进愈合,但未导致完全闭合。组织病理学检查显示,第四组和阳性对照组(第二组)中成熟I型胶原蛋白增加,与阴性对照组(第一组)相比,载体对照组(第三组)的胶原蛋白成熟度更好。免疫组织化学分析显示,第四组和第二组完全上皮化,有明显的细胞角蛋白表达,而第三组表现为轻度表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/da43d557c4d9/12011_2024_4268_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/ea254d250a2f/12011_2024_4268_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/e5bd4cf5bd78/12011_2024_4268_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/465190ca64d3/12011_2024_4268_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/b55560fca42e/12011_2024_4268_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/f887844deb7e/12011_2024_4268_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/f884b0b1e8d4/12011_2024_4268_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/011cdfec702c/12011_2024_4268_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/d707376b711c/12011_2024_4268_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/e2ad53c7a81f/12011_2024_4268_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/1e5a5ec24d82/12011_2024_4268_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/025381fe0bb7/12011_2024_4268_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/613d6229ddce/12011_2024_4268_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/da43d557c4d9/12011_2024_4268_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/ea254d250a2f/12011_2024_4268_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/e5bd4cf5bd78/12011_2024_4268_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/465190ca64d3/12011_2024_4268_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/b55560fca42e/12011_2024_4268_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/f887844deb7e/12011_2024_4268_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/f884b0b1e8d4/12011_2024_4268_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/011cdfec702c/12011_2024_4268_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/d707376b711c/12011_2024_4268_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/e2ad53c7a81f/12011_2024_4268_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/1e5a5ec24d82/12011_2024_4268_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/025381fe0bb7/12011_2024_4268_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/613d6229ddce/12011_2024_4268_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee6/11872767/da43d557c4d9/12011_2024_4268_Fig13_HTML.jpg

相似文献

[1]
Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat.

Biol Trace Elem Res. 2025-3

[2]
Green Synthesis and Evaluation of Lepidium didymum-mediated Silver Nanoparticles for in vitro Antibacterial Activity and Wound Healing in the Animal Model.

J Oleo Sci. 2023-3-30

[3]
Silver nanoparticles green synthesis via cyanobacterium Phormidium sp.: characterization, wound healing, antioxidant, antibacterial, and anti-inflammatory activities.

Eur Rev Med Pharmacol Sci. 2021-4

[4]
Biosynthesis of Silver Nanoparticles from : Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities.

Int J Nanomedicine. 2019-12-11

[5]
silver nanoparticle-loaded hydrocolloid film for enhanced diabetic wound healing in rats.

J Wound Care. 2024-3-1

[6]
Synthesis and Characterization of Silver Nanoparticles from and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity.

Molecules. 2022-9-24

[7]
Green Synthesis of Silver Nanoparticles by the Cyanobacteria sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions.

Mar Drugs. 2022-1-6

[8]
Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects.

Biochim Biophys Acta Gen Subj. 2018-10-16

[9]
Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties.

Curr Pharm Biotechnol. 2019

[10]
Green synthesis of propolis mediated silver nanoparticles with antioxidant, antibacterial, anti-inflammatory properties and their burn wound healing efficacy in animal model.

Biomed Phys Eng Express. 2024-12-26

引用本文的文献

[1]
Therapies and delivery systems for diabetic wound care: current insights and future directions.

Front Pharmacol. 2025-7-22

[2]
Cassia siamea-Derived Silver Nanoparticles: Synthesis and Their Impact on Male Fertility Through Biochemical and Histopathological Insights in Rats.

Biol Trace Elem Res. 2025-5-31

[3]
Via Air or Rhizosphere: The Phytotoxicity of Essential Oils and Dihydrochalcones.

Plants (Basel). 2025-2-25

本文引用的文献

[1]
Phyco-synthesis of silver nanoparticles by environmentally safe approach and their applications.

Sci Rep. 2024-4-26

[2]
Superior rat wound-healing activity of green synthesized silver nanoparticles from acetonitrile extract of L: Pellicle and leaves.

Heliyon. 2024-1-10

[3]
Wound healing potential of silver nanoparticles embedded in optimized bio-inspired hybridized chitosan soft and dry hydrogel.

Carbohydr Polym. 2024-1-15

[4]
Composite Hydrogels with Embedded Silver Nanoparticles and Ibuprofen as Wound Dressing.

Gels. 2023-8-14

[5]
Hydrogel-Containing Biogenic Silver Nanoparticles: Antibacterial Action, Evaluation of Wound Healing, and Bioaccumulation in Wistar Rats.

Microorganisms. 2023-7-15

[6]
Antibacterial Thermosensitive Silver-Hydrogel Nanocomposite Improves Wound Healing.

Gels. 2023-7-4

[7]
Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review.

Gels. 2023-6-29

[8]
Green synthesis of silver nanoparticles using leaf extract for inhibiting stem end bacteria in cut tree peony flowers.

Front Plant Sci. 2023-5-30

[9]
Comparative Characterization of Iron and Silver Nanoparticles: Extract-Stabilized and Classical Synthesis Methods.

Int J Mol Sci. 2023-5-25

[10]
Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice.

Pharmaceutics. 2023-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索