Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India.
Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India.
Sci Rep. 2024 Apr 26;14(1):9568. doi: 10.1038/s41598-024-60195-3.
In recent years, there has been an increasing interest in the green synthesis of metallic nanoparticles, mostly because of the evident limitations associated with chemical and physical methods. Green synthesis, commonly referred to as "biogenic synthesis," is seen as an alternative approach to produce AgNPs (silver nanoparticles). The current work focuses on the use of Asterarcys sp. (microalga) for biological reduction of AgNO to produce AgNPs. The optimal parameters for the reduction of AgNPs were determined as molarity of 3 mM for AgNO and an incubation duration of 24 h at pH 9, using a 20:80 ratio of algal extract to AgNO. The biosynthesized Ast-AgNPs were characterised using ultraviolet-visible spectroscopy (UV-Vis), zeta potential, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) patterns. The nanoparticles exhibited their highest absorption in the UV-visible spectra at 425 nm. The X-ray diffraction (XRD) investigation indicated the presence of characteristic peaks at certain angles: 38.30° (1 1 1), 44.40° (2 0 0), 64.64° (2 2 0), and 77.59° (3 1 1) according to the JCPDS file No. 04-0783. Based on SEM and TEM, the Ast-AgNPs had an average size of 35 nm and 52 nm, respectively. The zeta potential was determined to be - 20.8 mV, indicating their stability. The highest antibacterial effectiveness is shown against Staphylococcus aureus, with a zone of inhibition of 25.66 ± 1.52 mm at 250 μL/mL conc. of Ast-AgNPs. Likewise, Ast-AgNPs significantly suppressed the growth of Fusarium sp. and Curvularia sp. by 78.22% and 85.05%, respectively, at 150 μL/mL conc. of Ast-AgNPs. In addition, the Ast-AgNPs exhibited significant photocatalytic activity in degrading methylene blue (MB), achieving an 88.59% degradation in 120 min, revealing multiple downstream applications of Ast-AgNPs.
近年来,人们对金属纳米粒子的绿色合成越来越感兴趣,这主要是因为化学和物理方法存在明显的局限性。绿色合成,通常被称为“生物合成”,被视为一种替代方法来生产 AgNPs(银纳米粒子)。目前的工作重点是使用 Asterarcys sp.(微藻)来生物还原 AgNO 以生产 AgNPs。确定 AgNPs 还原的最佳参数为:AgNO 的摩尔浓度为 3 mM,藻提取物与 AgNO 的比例为 20:80,在 pH 9 下孵育 24 小时。使用紫外-可见光谱 (UV-Vis)、zeta 电位、扫描电子显微镜 (SEM)、傅里叶变换红外光谱 (FTIR)、X 射线衍射 (XRD)、能谱 (EDX) 和高分辨率透射电子显微镜 (HR-TEM) 结合选区电子衍射 (SAED) 图谱对生物合成的 Ast-AgNPs 进行了表征。纳米粒子在紫外-可见光谱中于 425 nm 处表现出最高的吸收。X 射线衍射 (XRD) 研究表明,在某些角度存在特征峰:38.30°(1 1 1)、44.40°(2 0 0)、64.64°(2 2 0)和 77.59°(3 1 1),根据 JCPDS 文件号 04-0783。根据 SEM 和 TEM,Ast-AgNPs 的平均尺寸分别为 35 nm 和 52 nm。zeta 电位测定为-20.8 mV,表明其稳定性。Ast-AgNPs 的最高抗菌效果是对金黄色葡萄球菌的抑制,在 250 μL/mL 的 Ast-AgNPs 浓度下,抑菌圈直径为 25.66±1.52 mm。同样,Ast-AgNPs 对镰刀菌和旋孢腔菌的生长抑制率分别为 78.22%和 85.05%,在 150 μL/mL 的 Ast-AgNPs 浓度下。此外,Ast-AgNPs 在光催化降解亚甲基蓝 (MB) 方面表现出显著的活性,在 120 分钟内达到 88.59%的降解率,显示出 Ast-AgNPs 的多种下游应用。
J Photochem Photobiol B. 2016-6
Int J Nanomedicine. 2020-10-28
Artif Cells Nanomed Biotechnol. 2017-8-8
Environ Sci Pollut Res Int. 2017-7-20
Nanomaterials (Basel). 2025-6-26
Microb Cell Fact. 2025-1-14
Biochem Biophys Rep. 2022-8-12
J Genet Eng Biotechnol. 2021-8-24
Saudi J Biol Sci. 2021-4