Suppr超能文献

预测潜伏性结核感染中活动性肺结核高危患者的列线图。

Predictive nomogram of high-risk patients with active tuberculosis in latent tuberculosis infection.

机构信息

Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China.

Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

J Infect Dev Ctries. 2024 May 30;18(5):732-741. doi: 10.3855/jidc.18456.

Abstract

INTRODUCTION

The absence of predictive models for early latent tuberculosis infection (LTBI) progression persists. This study aimed to create a screening model to identify high-risk LTBI patients prome to active tuberculosis (ATB) reactivation.

METHODOLOGY

Patients with confirmed ATB were enrolled alongside LTBI individuals as a reference, with relevant clinical data gathered. LASSO regression cross-validation reduced data dimensionality. A nomogram was developed using multiple logistic regression, internally validated with Bootstrap resampling. Evaluation included C-index, receiver operating characteristic (ROC) curve, and calibration curves, with clinical utility assessed through decision curve analysis.

RESULTS

The final nomogram incorporated serum albumin (OR = 1.337, p = 0.046), CD4+ (OR = 1.010, p = 0.004), and CD64 index (OR = 0.009, p = 0.020). The model achieved a C-index of 0.964, an area under the ROC curve of 0.962 (95% CI: 0.926-0.997), sensitivity of 0.971, and specificity of 0.910. Internal validation showed a mean absolute error of 0.013 and 86.4% identification accuracy. The decision curve indicated substantial net benefit at a risk threshold exceeding 10% (1: 9).

CONCLUSIONS

This study established a biologically-rooted nomogram for high-risk LTBI patients prone to ATB reactivation, offering strong predictability, concordance, and clinical value. It serves as a personalized risk assessment tool, accurately identifying patients necessitating priority prophylactic treatment, complementing existing host risk factors effectively.

摘要

简介

目前缺乏预测早期潜伏性结核感染(LTBI)进展的模型。本研究旨在建立一种筛查模型,以识别有活动性结核病(ATB)再激活风险的高危 LTBI 患者。

方法

我们纳入了确诊为 ATB 的患者和 LTBI 患者作为对照,收集了相关的临床数据。LASSO 回归交叉验证降低了数据的维度。使用多因素逻辑回归建立了一个列线图,通过 Bootstrap 重采样进行内部验证。评估包括 C 指数、接收者操作特征(ROC)曲线和校准曲线,并通过决策曲线分析评估临床实用性。

结果

最终的列线图纳入了血清白蛋白(OR=1.337,p=0.046)、CD4+(OR=1.010,p=0.004)和 CD64 指数(OR=0.009,p=0.020)。该模型的 C 指数为 0.964,ROC 曲线下面积为 0.962(95%CI:0.926-0.997),敏感性为 0.971,特异性为 0.910。内部验证的平均绝对误差为 0.013,识别准确率为 86.4%。决策曲线表明,在风险阈值超过 10%(1:9)时,具有显著的净获益。

结论

本研究建立了一个基于生物学的高危 LTBI 患者易发生 ATB 再激活的列线图,具有较强的预测性、一致性和临床价值。它可以作为一种个体化的风险评估工具,准确识别需要优先预防性治疗的患者,有效地补充现有的宿主风险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验