Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi, China.
Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
J Infect Dev Ctries. 2024 May 30;18(5):732-741. doi: 10.3855/jidc.18456.
The absence of predictive models for early latent tuberculosis infection (LTBI) progression persists. This study aimed to create a screening model to identify high-risk LTBI patients prome to active tuberculosis (ATB) reactivation.
Patients with confirmed ATB were enrolled alongside LTBI individuals as a reference, with relevant clinical data gathered. LASSO regression cross-validation reduced data dimensionality. A nomogram was developed using multiple logistic regression, internally validated with Bootstrap resampling. Evaluation included C-index, receiver operating characteristic (ROC) curve, and calibration curves, with clinical utility assessed through decision curve analysis.
The final nomogram incorporated serum albumin (OR = 1.337, p = 0.046), CD4+ (OR = 1.010, p = 0.004), and CD64 index (OR = 0.009, p = 0.020). The model achieved a C-index of 0.964, an area under the ROC curve of 0.962 (95% CI: 0.926-0.997), sensitivity of 0.971, and specificity of 0.910. Internal validation showed a mean absolute error of 0.013 and 86.4% identification accuracy. The decision curve indicated substantial net benefit at a risk threshold exceeding 10% (1: 9).
This study established a biologically-rooted nomogram for high-risk LTBI patients prone to ATB reactivation, offering strong predictability, concordance, and clinical value. It serves as a personalized risk assessment tool, accurately identifying patients necessitating priority prophylactic treatment, complementing existing host risk factors effectively.
目前缺乏预测早期潜伏性结核感染(LTBI)进展的模型。本研究旨在建立一种筛查模型,以识别有活动性结核病(ATB)再激活风险的高危 LTBI 患者。
我们纳入了确诊为 ATB 的患者和 LTBI 患者作为对照,收集了相关的临床数据。LASSO 回归交叉验证降低了数据的维度。使用多因素逻辑回归建立了一个列线图,通过 Bootstrap 重采样进行内部验证。评估包括 C 指数、接收者操作特征(ROC)曲线和校准曲线,并通过决策曲线分析评估临床实用性。
最终的列线图纳入了血清白蛋白(OR=1.337,p=0.046)、CD4+(OR=1.010,p=0.004)和 CD64 指数(OR=0.009,p=0.020)。该模型的 C 指数为 0.964,ROC 曲线下面积为 0.962(95%CI:0.926-0.997),敏感性为 0.971,特异性为 0.910。内部验证的平均绝对误差为 0.013,识别准确率为 86.4%。决策曲线表明,在风险阈值超过 10%(1:9)时,具有显著的净获益。
本研究建立了一个基于生物学的高危 LTBI 患者易发生 ATB 再激活的列线图,具有较强的预测性、一致性和临床价值。它可以作为一种个体化的风险评估工具,准确识别需要优先预防性治疗的患者,有效地补充现有的宿主风险因素。