Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA.
Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Biophysics Graduate Program, Stanford University Medical Center, Stanford, 94305, CA, USA.
Brain Stimul. 2024 May-Jun;17(3):698-712. doi: 10.1016/j.brs.2024.05.014. Epub 2024 May 30.
Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum.
OBJECTIVE/HYPOTHESIS: Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations.
We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS.
Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation.
By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.
经颅磁刺激(TMS)被认为可以改变正在进行的神经活动,并引起大脑功能的电路水平变化。虽然 TMS 的电生理效应已经通过头皮脑电图(EEG)进行了广泛研究,但这种方法通常评估皮质表面的低频神经活动。然而,TMS 可以安全地用于颅内电极(iEEG)患者,从而可以直接评估整个频谱范围内更深和更局部的振荡反应。
目的/假设:我们的研究使用 iEEG 来了解 TMS 在频谱域中对人类神经活动的影响。我们提出了以下三个问题:(1)哪些大脑区域对皮质靶向 TMS 有反应,以及在哪些频带中;(2)是否较深的脑结构表现出振荡反应;(3)TMS 引起的神经反应是否反映了诱发还是诱导的振荡。
我们招募了 17 名有留置电极的神经外科患者,在患者接受单次脉冲 TMS 的重复试验时记录神经活动,刺激部位分别为背外侧前额叶皮质(DLPFC)或顶叶皮质。使用频谱方法分析 iEEG 信号,以了解 TMS 的振荡反应。
刺激 DLPFC 引起额眶皮质和额颞区域(包括海马体)的广泛低频增加(3-8 Hz)和高频减少(30-110 Hz)。刺激顶叶皮质特异性地引起内侧颞叶的低频反应。虽然大多数低频活动与锁相诱发反应一致,但 DLPFC 刺激后前额区域表现出诱导的θ振荡。
通过将 TMS 与颅内 EEG 记录相结合,我们的结果表明 TMS 是一种有效手段,可以扰乱大脑广泛网络中的振荡神经活动,包括刺激本身无法直接触及的更深结构。