文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在结直肠癌中的应用:从患者筛查、治疗决策定制到新型生物标志物的鉴定。

Artificial Intelligence in Colorectal Cancer: From Patient Screening over Tailoring Treatment Decisions to Identification of Novel Biomarkers.

机构信息

Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany,

Bavarian Cancer Research Center (BZKF), Augsburg, Germany,

出版信息

Digestion. 2024;105(5):331-344. doi: 10.1159/000539678. Epub 2024 Jun 12.


DOI:10.1159/000539678
PMID:38865982
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11457979/
Abstract

BACKGROUND: Artificial intelligence (AI) is increasingly entering and transforming not only medical research but also clinical practice. In the last 10 years, new AI methods have enabled computers to perform visual tasks, reaching high performance and thereby potentially supporting and even outperforming human experts. This is in particular relevant for colorectal cancer (CRC), which is the 3rd most common cancer type in general, as along the CRC patient journey many complex visual tasks need to be performed: from endoscopy over imaging to histopathology; the screening, diagnosis, and treatment of CRC involve visual image analysis tasks. SUMMARY: In all these clinical areas, AI models have shown promising results by supporting physicians, improving accuracy, and providing new biological insights and biomarkers. By predicting prognostic and predictive biomarkers from routine images/slides, AI models could lead to an improved patient stratification for precision oncology approaches in the near future. Moreover, it is conceivable that AI models, in particular together with innovative techniques such as single-cell or spatial profiling, could help identify novel clinically as well as biologically meaningful biomarkers that could pave the way to new therapeutic approaches. KEY MESSAGES: Here, we give a comprehensive overview of AI in colorectal cancer, describing and discussing these developments as well as the next steps which need to be taken to incorporate AI methods more broadly into the clinical care of CRC.

摘要

背景:人工智能(AI)不仅日益进入并改变着医学研究领域,而且还改变着临床实践。在过去的 10 年中,新的 AI 方法使计算机能够执行视觉任务,从而达到了很高的性能,从而有可能支持甚至超越人类专家。这对于结直肠癌(CRC)尤其相关,因为 CRC 是总体上第三常见的癌症类型,因为在 CRC 患者的整个治疗过程中,需要执行许多复杂的视觉任务:从内窥镜检查到成像再到组织病理学;CRC 的筛查、诊断和治疗都涉及视觉图像分析任务。

总结:在所有这些临床领域,AI 模型通过支持医生、提高准确性以及提供新的生物学见解和生物标志物,显示出了有前景的结果。通过从常规图像/幻灯片中预测预后和预测性生物标志物,AI 模型可以在不久的将来为精准肿瘤学方法的患者分层提供更好的选择。此外,可以想象的是,AI 模型,特别是与单细胞或空间分析等创新技术结合使用,可能有助于识别新的具有临床和生物学意义的生物标志物,从而为新的治疗方法铺平道路。

关键信息:在这里,我们全面概述了结直肠癌中的 AI,描述和讨论了这些发展以及下一步需要采取的步骤,以便更广泛地将 AI 方法纳入 CRC 的临床护理中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/11457979/ef1d4459ef0f/dig-2024-0105-0005-539678_F02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/11457979/e6aeb7c0243f/dig-2024-0105-0005-539678_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/11457979/ef1d4459ef0f/dig-2024-0105-0005-539678_F02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/11457979/e6aeb7c0243f/dig-2024-0105-0005-539678_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb92/11457979/ef1d4459ef0f/dig-2024-0105-0005-539678_F02.jpg

相似文献

[1]
Artificial Intelligence in Colorectal Cancer: From Patient Screening over Tailoring Treatment Decisions to Identification of Novel Biomarkers.

Digestion. 2024

[2]
Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence.

Clin Chim Acta. 2024-6-1

[3]
Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion.

Ann Med. 2023

[4]
Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer.

Curr Oncol. 2022-3-7

[5]
Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer.

J Clin Pathol. 2021-7

[6]
Challenges and perspectives in use of artificial intelligence to support treatment recommendations in clinical oncology.

Cancer Med. 2024-6

[7]
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology.

Semin Cancer Biol. 2023-6

[8]
Pioneering noninvasive colorectal cancer detection with an AI-enhanced breath volatilomics platform.

Theranostics. 2024-7-8

[9]
Deep learning transforms colorectal cancer biomarker prediction from histopathology images.

Cancer Cell. 2023-9-11

[10]
Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases.

World J Gastroenterol. 2022-1-7

引用本文的文献

[1]
Synergistic H&E and IHC image analysis by AI predicts cancer biomarkers and survival outcomes in colorectal and breast cancer.

Commun Med (Lond). 2025-8-1

[2]
Tumor Niche Influences the Activity and Delivery of Anticancer Drugs: Pharmacology Meets Chemistry.

Pharmaceuticals (Basel). 2025-7-17

[3]
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.

Tomography. 2024-11-18

[4]
Early diagnostic strategies for colorectal cancer.

World J Gastroenterol. 2024-9-7

本文引用的文献

[1]
Author Correction: Pathway level subtyping identifies a slow-cycling biological phenotype associated with poor clinical outcomes in colorectal cancer.

Nat Genet. 2024-6

[2]
A guide to artificial intelligence for cancer researchers.

Nat Rev Cancer. 2024-6

[3]
AI-enabled electrocardiography alert intervention and all-cause mortality: a pragmatic randomized clinical trial.

Nat Med. 2024-5

[4]
Image-based consensus molecular subtyping in rectal cancer biopsies and response to neoadjuvant chemoradiotherapy.

NPJ Precis Oncol. 2024-4-9

[5]
Stroma AReactive Invasion Front Areas (SARIFA): a novel histopathologic biomarker in colorectal cancer patients and its association with the luminal tumour proportion.

Transl Oncol. 2024-6

[6]
A computer-aided polyp detection system in screening and surveillance colonoscopy: an international, multicentre, randomised, tandem trial.

Lancet Digit Health. 2024-3

[7]
Multiplex analysis of intratumoural immune infiltrate and prognosis in patients with stage II-III colorectal cancer from the SCOT and QUASAR 2 trials: a retrospective analysis.

Lancet Oncol. 2024-2

[8]
First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors.

Commun Med (Lond). 2024-1-13

[9]
Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics.

NPJ Precis Oncol. 2024-1-10

[10]
Artificial Intelligence-Assisted Colonoscopy in Real-World Clinical Practice: A Systematic Review and Meta-Analysis.

Clin Transl Gastroenterol. 2024-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索