Suppr超能文献

利用人工智能增强的呼吸挥发性有机化合物分析平台进行开创性的非侵入性结直肠癌检测。

Pioneering noninvasive colorectal cancer detection with an AI-enhanced breath volatilomics platform.

作者信息

Liu Yongqian, Ji Yongyan, Chen Jian, Zhang Yixuan, Li Xiaowen, Li Xiang

机构信息

Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P.R. China.

Department of gastroenterology, Huadong hospital, Fudan University, Shanghai 200040, P.R. China.

出版信息

Theranostics. 2024 Jul 8;14(11):4240-4255. doi: 10.7150/thno.94950. eCollection 2024.

Abstract

The sensitivity and specificity of current breath biomarkers are often inadequate for effective cancer screening, particularly in colorectal cancer (CRC). While a few exhaled biomarkers in CRC exhibit high specificity, they lack the requisite sensitivity for early-stage detection, thereby limiting improvements in patient survival rates. In this study, we developed an advanced Mass Spectrometry-based volatilomics platform, complemented by an enhanced breath sampler. The platform integrates artificial intelligence (AI)-assisted algorithms to detect multiple volatile organic compounds (VOCs) biomarkers in human breath. Subsequently, we applied this platform to analyze 364 clinical CRC and normal exhaled samples. The diagnostic signatures, including 2-methyl, octane, and butyric acid, generated by the platform effectively discriminated CRC patients from normal controls with high sensitivity (89.7%), specificity (86.8%), and accuracy (AUC = 0.91). Furthermore, the metastatic signature correctly identified over 50% of metastatic patients who tested negative for carcinoembryonic antigen (CEA). Fecal validation indicated that elevated breath biomarkers correlated with an inflammatory response guided by Bacteroides fragilis in CRC. This study introduces a sophisticated AI-aided Mass Spectrometry-based platform capable of identifying novel and feasible breath biomarkers for early-stage CRC detection. The promising results position the platform as an efficient noninvasive screening test for clinical applications, offering potential advancements in early detection and improved survival rates for CRC patients.

摘要

目前呼吸生物标志物的敏感性和特异性往往不足以用于有效的癌症筛查,尤其是在结直肠癌(CRC)方面。虽然CRC中的一些呼出生物标志物具有高特异性,但它们缺乏早期检测所需的敏感性,从而限制了患者生存率的提高。在本研究中,我们开发了一个先进的基于质谱的挥发物组学平台,并辅以增强型呼吸采样器。该平台整合了人工智能(AI)辅助算法,以检测人呼吸中的多种挥发性有机化合物(VOCs)生物标志物。随后,我们应用该平台分析了364份临床CRC和正常呼出样本。该平台生成的诊断特征,包括2-甲基、辛烷和丁酸,能够以高敏感性(89.7%)、特异性(86.8%)和准确性(AUC = 0.91)有效地区分CRC患者和正常对照。此外,转移特征正确识别了超过50%癌胚抗原(CEA)检测呈阴性的转移患者。粪便验证表明,呼出生物标志物升高与CRC中脆弱拟杆菌引导的炎症反应相关。本研究介绍了一个复杂的基于AI辅助质谱的平台,该平台能够识别用于早期CRC检测的新型可行呼吸生物标志物。这些有前景的结果将该平台定位为一种用于临床应用的高效非侵入性筛查测试,为CRC患者的早期检测和提高生存率提供了潜在进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db14/11303087/116aa300c66b/thnov14p4240g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验