Suppr超能文献

人工智能辅助结肠镜检查在真实临床实践中的应用:系统评价和荟萃分析。

Artificial Intelligence-Assisted Colonoscopy in Real-World Clinical Practice: A Systematic Review and Meta-Analysis.

机构信息

Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA.

Department of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel.

出版信息

Clin Transl Gastroenterol. 2024 Mar 1;15(3):e00671. doi: 10.14309/ctg.0000000000000671.

Abstract

INTRODUCTION

Artificial intelligence (AI) could minimize the operator-dependent variation in colonoscopy quality. Computer-aided detection (CADe) has improved adenoma detection rate (ADR) and adenomas per colonoscopy (APC) in randomized controlled trials. There is a need to assess the impact of CADe in real-world settings.

METHODS

We searched MEDLINE, EMBASE, and Web of Science for nonrandomized real-world studies of CADe in colonoscopy. Random-effects meta-analyses were performed to examine the effect of CADe on ADR and APC. The study is registered under PROSPERO (CRD42023424037). There was no funding for this study.

RESULTS

Twelve of 1,314 studies met inclusion criteria. Overall, ADR was statistically significantly higher with vs without CADe (36.3% vs 35.8%, risk ratio [RR] 1.13, 95% confidence interval [CI] 1.01-1.28). This difference remained significant in subgroup analyses evaluating 6 prospective (37.3% vs 35.2%, RR 1.15, 95% CI 1.01-1.32) but not 6 retrospective (35.7% vs 36.2%, RR 1.12, 95% CI 0.92-1.36) studies. Among 6 studies with APC data, APC rate ratio with vs without CADe was 1.12 (95% CI 0.95-1.33). In 4 studies with GI Genius (Medtronic), there was no difference in ADR with vs without CADe (RR 0.96, 95% CI 0.85-1.07).

DISCUSSION

ADR, but not APC, was slightly higher with vs without CADe among all available real-world studies. This difference was attributed to the results of prospective but not retrospective studies. The discrepancies between these findings and those of randomized controlled trials call for future research on the true impact of current AI technology on colonoscopy quality and the subtleties of human-AI interactions.

摘要

简介

人工智能(AI)可以最大限度地减少结肠镜检查质量中操作人员依赖性的变化。计算机辅助检测(CADe)在随机对照试验中提高了腺瘤检出率(ADR)和每结肠镜检查的腺瘤数(APC)。需要评估 CADe 在实际环境中的影响。

方法

我们在 MEDLINE、EMBASE 和 Web of Science 中搜索了关于结肠镜检查中 CADe 的非随机真实世界研究。使用随机效应荟萃分析来检查 CADe 对 ADR 和 APC 的影响。该研究已在 PROSPERO(CRD42023424037)中注册。本研究无资金支持。

结果

1314 项研究中有 12 项符合纳入标准。总体而言,CADe 组的 ADR 明显高于无 CADe 组(36.3% vs 35.8%,风险比[RR]1.13,95%置信区间[CI]1.01-1.28)。在评估 6 项前瞻性研究(37.3% vs 35.2%,RR 1.15,95% CI 1.01-1.32)而非 6 项回顾性研究(35.7% vs 36.2%,RR 1.12,95% CI 0.92-1.36)的亚组分析中,这种差异仍然显著。在 6 项有 APC 数据的研究中,CADe 组与无 CADe 组 APC 率比值为 1.12(95% CI 0.95-1.33)。在 4 项有 GI Genius(美敦力)的研究中,CADe 组与无 CADe 组的 ADR 无差异(RR 0.96,95% CI 0.85-1.07)。

讨论

在所有可用的真实世界研究中,ADR 略微高于 CADe 组,但 APC 无差异。这种差异归因于前瞻性研究而不是回顾性研究的结果。这些发现与随机对照试验的结果之间的差异表明,需要进一步研究当前人工智能技术对结肠镜检查质量的真正影响,以及人机交互的细微差别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b8/10962886/8fd8ba9f0226/ct9-15-e00671-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验