Dabove P, Daud M, Olivotto L
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy.
DigiSky S.R.L., Turin, Italy.
Sci Rep. 2024 Jun 12;14(1):13510. doi: 10.1038/s41598-024-64231-0.
In the dynamic urban landscape, understanding the distribution of buildings is paramount. Extracting and delineating building footprints from high-resolution images, captured by aerial platforms or satellites, is essential but challenging to accomplish manually, due to the abundance of high-resolution data. Automation becomes imperative, yet it introduces complexities related to handling diverse data sources and the computational demands of advanced algorithms. The innovative solution proposed in this paper addresses some intricate challenges occurring when integrating deep learning and data fusion on Earth Observed imagery. By merging RGB orthophotos with Digital Surface Models, deriving from the same aerial high-resolution surveys, an integrated consistent four-band dataset is generated. This unified approach, focused on the extraction of height information through stereoscopy utilizing a singular source, facilitates enhanced pixel-to-pixel data fusion. Employing DeepLabv3 algorithms, a state-of-the-art semantic segmentation network for multi-scale context, pixel-based segmentation on the integrated dataset was performed, excelling in capturing intricate details, particularly when enhanced by the additional height information deriving from the Digital Surface Models acquired over urban landscapes. Evaluation over a 21 km area in Turin, Italy, featuring diverse building frameworks, showcases how the proposed approach leads towards superior accuracy levels and building boundary refinement. Notably, the methodology discussed in the present article, significantly reduces training time compared to conventional approaches like U-Net, overcoming inherent challenges in high-resolution data automation. By establishing the effectiveness of leveraging DeepLabv3 algorithms on an integrated dataset for precise building footprint segmentation, the present contribution holds promise for applications in 3D modelling, Change detection and urban planning. An approach favouring the application of deep learning strategies on integrated high-resolution datasets can then guide decision-making processes facilitating urban management tasks.
在动态的城市景观中,了解建筑物的分布至关重要。从航空平台或卫星拍摄的高分辨率图像中提取和勾勒建筑物足迹至关重要,但由于高分辨率数据量庞大,手动完成具有挑战性。自动化变得势在必行,但它带来了与处理不同数据源以及先进算法的计算需求相关的复杂性。本文提出的创新解决方案解决了在地球观测图像上集成深度学习和数据融合时出现的一些复杂挑战。通过将RGB正射影像与源自同一航空高分辨率测量的数字表面模型合并,生成了一个集成的一致四波段数据集。这种统一的方法,专注于通过利用单一源的立体视觉提取高度信息,促进了增强的逐像素数据融合。采用DeepLabv3算法(一种用于多尺度上下文的先进语义分割网络),对集成数据集进行了基于像素的分割,在捕捉复杂细节方面表现出色,特别是当通过从城市景观获取的数字表面模型派生的额外高度信息增强时。在意大利都灵一个21公里区域进行的评估,该区域具有多样的建筑框架,展示了所提出的方法如何实现更高的精度水平和建筑物边界细化。值得注意的是,与U-Net等传统方法相比,本文讨论的方法显著减少了训练时间,克服了高分辨率数据自动化中的固有挑战。通过确立在集成数据集上利用DeepLabv3算法进行精确建筑物足迹分割的有效性,本研究成果在三维建模、变化检测和城市规划应用方面具有前景。一种有利于在集成高分辨率数据集上应用深度学习策略的方法,进而可以指导决策过程,促进城市管理任务。