Nnanatu Chibuzor Christopher, Bonnie Amy, Joseph Josiah, Yankey Ortis, Cihan Duygu, Gadiaga Assane, Voepel Hal, Abbott Thomas, Chamberlain Heather R, Tia Mercedita, Sander Marielle, Davis Justin, Lazar Attila N, Tatem Andrew J
WorldPop Research Group, School of Geography and Environmental Science, University of Southampton, Southampton, UK.
Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria.
Nat Commun. 2025 May 28;16(1):4951. doi: 10.1038/s41467-025-59862-4.
Effective governance requires timely and reliable small area population counts. Geospatial modelling approaches which utilise bespoke microcensus surveys and satellite-derived settlement maps and other spatial datasets have been developed to fill population data gaps in countries where censuses are outdated and incomplete. However, logistics and costs of microcensus surveys and tree canopy or cloud cover obscuring settlements in satellite images limit its wider applications in tropical rural settings. Here, we present a two-step Bayesian hierarchical modelling approach that can integrate routinely collected health intervention campaign data and partially observed settlement data to produce reliable small area population estimates. Reductions in relative error rates were 32-73% in a simulation study, and ~32% when applied to malaria survey data in Papua New Guinea. The results highlight the value of demographic data routinely collected through health intervention campaigns or household surveys for improving small area population estimates, and how biases introduced by satellite data limitations can be overcome.
有效的治理需要及时且可靠的小区域人口统计数据。已经开发出利用定制微观人口普查调查、卫星衍生的定居点地图和其他空间数据集的地理空间建模方法,以填补那些普查数据过时且不完整的国家的人口数据空白。然而,微观人口普查调查的后勤工作和成本,以及卫星图像中树冠或云层覆盖导致定居点模糊不清,限制了其在热带农村地区的更广泛应用。在此,我们提出一种两步贝叶斯分层建模方法,该方法可以整合常规收集的健康干预活动数据和部分观测到的定居点数据,以生成可靠的小区域人口估计值。在一项模拟研究中,相对误差率降低了32%至73%,应用于巴布亚新几内亚的疟疾调查数据时降低了约32%。研究结果凸显了通过健康干预活动或家庭调查常规收集的人口数据对于改进小区域人口估计的价值,以及如何克服卫星数据局限性所引入的偏差。