Department of Oncology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Centre for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Department of Medical Oncology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Zhuang Autonomous Region, China.
Nat Protoc. 2024 Oct;19(10):2967-2999. doi: 10.1038/s41596-024-01006-x. Epub 2024 Jun 12.
Catalytic mechanism-based, light-activated traps have recently been developed to identify the substrates of cysteine or serine hydrolases. These traps are hydrolase mutants whose catalytic cysteine or serine are replaced with genetically encoded 2,3-diaminopropionic acid (DAP). DAP-containing hydrolases specifically capture the transient thioester- or ester-linked acyl-enzyme intermediates resulting from the first step of the proteolytic reaction as their stable amide analogs. The trapped substrate fragments allow the downstream identification of hydrolase substrates by mass spectrometry and immunoblotting. In this protocol, we provide a detailed step-by-step guide for substrate capture and identification of the peptidase domain of the large tegument protein deneddylase (UL36) from human herpesvirus 1, both in mammalian cell lysate and live mammalian cells. Four procedures are included: Procedure 1, DAP-mediated substrate trapping in mammalian cell lysate (8 d); Procedure 2, DAP-mediated substrate trapping in adherent mammalian cells (6 d); Procedure 3, DAP-mediated substrate trapping in suspension mammalian cells (5 d); and Procedure 4, substrate identification and validation (12-13 d). Basic skills to perform protein expression in bacteria or mammalian cells, affinity enrichment and proteomic analysis are required to implement the protocol. This protocol will be a practical guide for identifying substrates of serine or cysteine hydrolases either in a complex mixture, where genetic manipulation is challenging, or in live cells such as bacteria, yeasts and mammalian cells.
基于催化机制的光活化捕获物最近被开发出来,用于鉴定半胱氨酸或丝氨酸水解酶的底物。这些捕获物是水解酶的突变体,其催化半胱氨酸或丝氨酸被遗传编码的 2,3-二氨基丙酸(DAP)取代。含有 DAP 的水解酶特异性地捕获由蛋白水解反应第一步产生的瞬态硫酯或酯键连接的酰基酶中间产物,作为它们稳定的酰胺类似物。捕获的底物片段允许通过质谱和免疫印迹法对水解酶的底物进行下游鉴定。在本方案中,我们提供了一个详细的分步指南,用于在哺乳动物细胞裂解物和活哺乳动物细胞中捕获和鉴定人疱疹病毒 1 的大被膜蛋白去糖基酶(UL36)的肽酶结构域的底物。包括四个程序:程序 1,在哺乳动物细胞裂解物中进行 DAP 介导的底物捕获(约 8 天);程序 2,在贴壁哺乳动物细胞中进行 DAP 介导的底物捕获(约 6 天);程序 3,在悬浮哺乳动物细胞中进行 DAP 介导的底物捕获(约 5 天);以及程序 4,底物鉴定和验证(约 12-13 天)。实施该方案需要具备在细菌或哺乳动物细胞中进行蛋白质表达、亲和富集和蛋白质组学分析的基本技能。该方案将成为鉴定复杂混合物中或在活细胞(如细菌、酵母和哺乳动物细胞)中丝氨酸或半胱氨酸水解酶的底物的实用指南。