QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
Nature. 2024 Jun;630(8016):329-334. doi: 10.1038/s41586-024-07434-9. Epub 2024 Jun 12.
Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superconductor. We demonstrate systematic control over inter-dot couplings through in-plane rotations of the magnetic field and via electrostatic gating of the proximitized region. This allows us to tune the system to sweet spots in parameter space, where robust correlated zero-bias conductance peaks are observed in tunnelling spectroscopy. To study the extent of hybridization between localized MBSs, we probe the evolution of the energy spectrum with magnetic field and estimate the Majorana polarization, an important metric for Majorana-based qubits. The implementation of a Kitaev chain on a scalable and flexible two-dimensional platform provides a realistic path towards more advanced experiments that require manipulation and readout of multiple MBSs.
人工 Kitaev 链可用于超导-半导体混合系统中设计马约拉纳束缚态 (MBS)。在这项工作中,我们通过一个超导区域将两个量子点耦合,在二维电子气中实现了一个双站点 Kitaev 链。我们通过平面内磁场的旋转以及通过超导区域的静电门控,实现了对双点间耦合的系统控制。这使我们能够在参数空间中调整系统到最佳状态,在隧道谱中观察到稳健的相关零偏置电导峰。为了研究局域 MBS 之间的杂交程度,我们通过磁场探测能谱的演化,并估计马约拉纳极化,这是基于马约拉纳的量子比特的一个重要度量。在可扩展和灵活的二维平台上实现 Kitaev 链为需要操纵和读取多个马约拉纳束缚态的更先进实验提供了现实途径。