动静脉差异分析改善了糖尿病视网膜病变的光学相干断层扫描血管造影分类。
Differential artery-vein analysis improves the OCTA classification of diabetic retinopathy.
作者信息
Abtahi Mansour, Le David, Ebrahimi Behrouz, Dadzie Albert K, Rahimi Mojtaba, Hsieh Yi-Ting, Heiferman Michael J, Lim Jennifer I, Yao Xincheng
机构信息
Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
出版信息
Biomed Opt Express. 2024 May 22;15(6):3889-3899. doi: 10.1364/BOE.521657. eCollection 2024 Jun 1.
This study investigates the impact of differential artery-vein (AV) analysis in optical coherence tomography angiography (OCTA) on machine learning classification of diabetic retinopathy (DR). Leveraging deep learning for arterial-venous area (AVA) segmentation, six quantitative features, including perfusion intensity density (PID), blood vessel density (BVD), vessel area flux (VAF), blood vessel caliber (BVC), blood vessel tortuosity (BVT), and vessel perimeter index (VPI) features, were derived from OCTA images before and after AV differentiation. A support vector machine (SVM) classifier was utilized to assess both binary and multiclass classifications of control, diabetic patients without DR (NoDR), mild DR, moderate DR, and severe DR groups. Initially, one-region features, i.e., quantitative features extracted from the entire OCTA, were evaluated for DR classification. Differential AV analysis improved classification accuracies from 78.86% to 87.63% and from 79.62% to 85.66% for binary and multiclass classifications, respectively. Additionally, three-region features derived from the entire image, parafovea, and perifovea, were incorporated for DR classification. Differential AV analysis further enhanced classification accuracies from 84.43% to 93.33% and from 83.40% to 89.25% for binary and multiclass classifications, respectively. These findings highlight the potential of differential AV analysis in augmenting disease diagnosis and treatment assessment using OCTA.
本研究调查了光学相干断层扫描血管造影(OCTA)中动静脉差异分析对糖尿病视网膜病变(DR)机器学习分类的影响。利用深度学习进行动静脉区域(AVA)分割,从AV分化前后的OCTA图像中提取了六个定量特征,包括灌注强度密度(PID)、血管密度(BVD)、血管面积通量(VAF)、血管管径(BVC)、血管迂曲度(BVT)和血管周长指数(VPI)特征。使用支持向量机(SVM)分类器评估对照组、无DR的糖尿病患者(NoDR)、轻度DR、中度DR和重度DR组的二元和多类分类。最初,评估了单区域特征,即从整个OCTA中提取的定量特征用于DR分类。动静脉差异分析使二元和多类分类的准确率分别从78.86%提高到87.63%和从79.62%提高到85.66%。此外,将从整个图像、黄斑旁和黄斑周围提取的三个区域特征纳入DR分类。动静脉差异分析使二元和多类分类的准确率分别进一步从84.43%提高到93.33%和从83.40%提高到89.25%。这些发现突出了动静脉差异分析在利用OCTA增强疾病诊断和治疗评估方面的潜力。