Abtahi Mansour, Le David, Ebrahimi Behrouz, Dadzie Albert K, Lim Jennifer I, Yao Xincheng
Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
Commun Med (Lond). 2023 Apr 17;3(1):54. doi: 10.1038/s43856-023-00287-9.
Differential artery-vein (AV) analysis in optical coherence tomography angiography (OCTA) holds promise for the early detection of eye diseases. However, currently available methods for AV analysis are limited for binary processing of retinal vasculature in OCTA, without quantitative information of vascular perfusion intensity. This study is to develop and validate a method for quantitative AV analysis of vascular perfusion intensity.
A deep learning network AVA-Net has been developed for automated AV area (AVA) segmentation in OCTA. Seven new OCTA features, including arterial area (AA), venous area (VA), AVA ratio (AVAR), total perfusion intensity density (T-PID), arterial PID (A-PID), venous PID (V-PID), and arterial-venous PID ratio (AV-PIDR), were extracted and tested for early detection of diabetic retinopathy (DR). Each of these seven features was evaluated for quantitative evaluation of OCTA images from healthy controls, diabetic patients without DR (NoDR), and mild DR.
It was observed that the area features, i.e., AA, VA and AVAR, can reveal significant differences between the control and mild DR. Vascular perfusion parameters, including T-PID and A-PID, can differentiate mild DR from control group. AV-PIDR can disclose significant differences among all three groups, i.e., control, NoDR, and mild DR. According to Bonferroni correction, the combination of A-PID and AV-PIDR can reveal significant differences in all three groups.
AVA-Net, which is available on GitHub for open access, enables quantitative AV analysis of AV area and vascular perfusion intensity. Comparative analysis revealed AV-PIDR as the most sensitive feature for OCTA detection of early DR. Ensemble AV feature analysis, e.g., the combination of A-PID and AV-PIDR, can further improve the performance for early DR assessment.
光学相干断层扫描血管造影(OCTA)中的动静脉差异分析有望实现眼部疾病的早期检测。然而,目前可用的动静脉分析方法在OCTA中对视网膜血管系统进行二元处理时存在局限性,缺乏血管灌注强度的定量信息。本研究旨在开发并验证一种用于血管灌注强度定量动静脉分析的方法。
已开发出一种深度学习网络AVA-Net,用于在OCTA中自动分割动静脉区域(AVA)。提取了七个新的OCTA特征,包括动脉面积(AA)、静脉面积(VA)、AVA比率(AVAR)、总灌注强度密度(T-PID)、动脉PID(A-PID)、静脉PID(V-PID)和动静脉PID比率(AV-PIDR),并对其进行测试以用于糖尿病视网膜病变(DR)的早期检测。对来自健康对照、无DR的糖尿病患者(NoDR)和轻度DR患者的OCTA图像进行定量评估时,对这七个特征中的每一个进行了评估。
观察到面积特征,即AA、VA和AVAR,可揭示对照组和轻度DR之间的显著差异。包括T-PID和A-PID在内的血管灌注参数可区分轻度DR与对照组。AV-PIDR可揭示所有三组,即对照组、NoDR组和轻度DR组之间的显著差异。根据Bonferroni校正,A-PID和AV-PIDR的组合可揭示所有三组之间的显著差异。
可在GitHub上获取的开放访问版本AVA-Net能够对AVA区域和血管灌注强度进行定量动静脉分析。对比分析表明,AV-PIDR是OCTA检测早期DR最敏感的特征。联合动静脉特征分析,例如A-PID和AV-PIDR的组合,可进一步提高早期DR评估的性能。