Abtahi Mansour, Dadzie Albert K, Ebrahimi Behrouz, Huang Boda, Hsieh Yi-Ting, Yao Xincheng
Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Biomed Opt Express. 2025 Apr 1;16(4):1732-1741. doi: 10.1364/BOE.557748.
This study evaluates the role of differential artery-vein (AV) analysis in optical coherence tomography angiography (OCTA) for treatment outcome prediction of diabetic macular edema (DME). Deep learning AV segmentation in OCTA enabled the robust extraction of quantitative AV features, including perfusion intensity density (PID), blood vessel density (BVD), vessel skeleton density (VSD), vessel area flux (VAF), blood vessel caliber (BVC), blood vessel tortuosity (BVT), and vessel perimeter index (VPI). Support vector machine (SVM) classifiers were employed to predict changes in best-corrected visual acuity (BCVA) and central retinal thickness (CRT). Comparative analysis revealed that differential AV analysis significantly enhanced prediction performance, with BCVA accuracy improved from 70.45% to 86.36% and CRT accuracy enhanced from 68.18% to 79.55% compared to traditional OCTA analysis. These findings underscore the potential of AV analysis as a transformative tool for advancing personalized therapeutic strategies and improving clinical decision-making in managing DME.
本研究评估了光学相干断层扫描血管造影(OCTA)中动静脉(AV)差异分析在预测糖尿病性黄斑水肿(DME)治疗结果中的作用。OCTA中的深度学习AV分割能够可靠地提取定量AV特征,包括灌注强度密度(PID)、血管密度(BVD)、血管骨架密度(VSD)、血管面积通量(VAF)、血管管径(BVC)、血管迂曲度(BVT)和血管周长指数(VPI)。采用支持向量机(SVM)分类器预测最佳矫正视力(BCVA)和中心视网膜厚度(CRT)的变化。对比分析显示,与传统OCTA分析相比,AV差异分析显著提高了预测性能,BCVA准确率从70.45%提高到86.36%,CRT准确率从68.18%提高到79.55%。这些发现强调了AV分析作为推进个性化治疗策略和改善DME管理中临床决策的变革性工具的潜力。