Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France.
Nucleic Acids Res. 2024 Aug 12;52(14):8241-8253. doi: 10.1093/nar/gkae506.
Pathogenic bacteria employ complex systems to cope with metal ion shortage conditions and propagate in the host. IsrR is a regulatory RNA (sRNA) whose activity is decisive for optimum Staphylococcus aureus fitness upon iron starvation and for full virulence. IsrR down-regulates several genes encoding iron-containing enzymes to spare iron for essential processes. Here, we report that IsrR regulates the tricarboxylic acid (TCA) cycle by controlling aconitase (CitB), an iron-sulfur cluster-containing enzyme, and its transcriptional regulator, CcpE. This IsrR-dependent dual-regulatory mechanism provides an RNA-driven feedforward loop, underscoring the tight control required to prevent aconitase expression. Beyond its canonical enzymatic role, aconitase becomes an RNA-binding protein with regulatory activity in iron-deprived conditions, a feature that is conserved in S. aureus. Aconitase not only negatively regulates its own expression, but also impacts the enzymes involved in both its substrate supply and product utilization. This moonlighting activity concurrently upregulates pyruvate carboxylase expression, allowing it to compensate for the TCA cycle deficiency associated with iron scarcity. These results highlight the cascade of complex posttranscriptional regulations controlling S. aureus central metabolism in response to iron deficiency.
致病菌采用复杂的系统来应对金属离子短缺的情况,并在宿主体内繁殖。IsrR 是一种调节 RNA(sRNA),其活性对金黄色葡萄球菌在缺铁饥饿时的最佳适应性和完全毒力至关重要。IsrR 下调了几个编码含铁酶的基因,以节省铁用于必需过程。在这里,我们报告 IsrR 通过控制含有铁硫簇的酶 aconitase(CitB)及其转录调节剂 CcpE 来调节三羧酸 (TCA) 循环。这种依赖于 IsrR 的双重调节机制提供了一个 RNA 驱动的前馈回路,强调了为防止 aconitase 表达而需要进行严格控制。除了其典型的酶作用外,在缺铁条件下,aconitase 成为一种具有调节活性的 RNA 结合蛋白,这一特征在金黄色葡萄球菌中是保守的。aconitase 不仅负调控自身的表达,还影响其底物供应和产物利用所涉及的酶。这种兼职活动同时上调了丙酮酸羧化酶的表达,使其能够补偿与缺铁相关的 TCA 循环缺陷。这些结果强调了控制金黄色葡萄球菌中心代谢对铁缺乏反应的复杂转录后调控级联。