Tamersit Khalil, Kouzou Abdellah, Rodriguez José, Abdelrahem Mohamed
National School of Nanoscience and Nanotechnology, Abdelhafid Ihaddaden Science and Technology Hub, Sidi Abdellah, Algiers 16000, Algeria.
Department of Electronics and Telecommunications, Université 8 Mai 1945 Guelma, Guelma 24000, Algeria.
Nanomaterials (Basel). 2024 Jun 1;14(11):962. doi: 10.3390/nano14110962.
This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green's function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.
本文通过采用量子模拟方法的计算分析,研究了真空栅介质无掺杂碳纳米管/纳米带场效应晶体管(VGD-DL CNT/GNRFETs)的性能。该方法在弹道极限下将泊松求解器的自洽解与模式空间非平衡格林函数(NEGF)相结合。采用真空栅介质(VGD)范式可确保辐射硬化功能,同时避免辐射诱导的俘获电荷机制,而无掺杂范式则通过避免在纳米尺度范围内实现陡峭的掺杂梯度来提高制造灵活性。纳米器件的静电掺杂通过源极和漏极掺杂栅极实现。模拟涵盖了MOSFET和隧道FET(TFET)模式。数值研究全面考察了电位分布、转移特性、亚阈值摆幅、漏电流、导通电流、电流比和缩放能力。结果表明,真空纳米器件在高性能、辐射硬化开关应用方面具有鲁棒性。此外,成功提出了一种通过调整掺杂栅极电压进行外部增强的方案,以优化能带图并改善超缩放 regime 下的开关性能。这些发现强调了真空栅介质碳基纳米晶体管在超缩放、高性能、节能和抗辐射纳米电子学方面的潜力。