Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
Mol Cell Proteomics. 2024 Jul;23(7):100798. doi: 10.1016/j.mcpro.2024.100798. Epub 2024 Jun 11.
Rescoring of peptide spectrum matches originating from database search engines enabled by peptide property predictors is exceeding the performance of peptide identification from traditional database search engines. In contrast to the peptide spectrum match scores calculated by traditional database search engines, rescoring peptide spectrum matches generates scores based on comparing observed and predicted peptide properties, such as fragment ion intensities and retention times. These newly generated scores enable a more efficient discrimination between correct and incorrect peptide spectrum matches. This approach was shown to lead to substantial improvements in the number of confidently identified peptides, facilitating the analysis of challenging datasets in various fields such as immunopeptidomics, metaproteomics, proteogenomics, and single-cell proteomics. In this review, we summarize the key elements leading up to the recent introduction of multiple data-driven rescoring pipelines. We provide an overview of relevant post-processing rescoring tools, introduce prominent data-driven rescoring pipelines for various applications, and highlight limitations, opportunities, and future perspectives of this approach and its impact on mass spectrometry-based proteomics.
基于肽性质预测器对来自数据库搜索引擎的肽谱匹配进行重新评分,其性能超过了传统数据库搜索引擎的肽鉴定性能。与传统数据库搜索引擎计算的肽谱匹配分数不同,重新评分肽谱匹配会根据观察到的和预测的肽性质(例如片段离子强度和保留时间)生成分数。这些新生成的分数能够更有效地区分正确和错误的肽谱匹配。这种方法被证明可以大大提高置信度鉴定肽的数量,从而促进了免疫肽组学、宏蛋白质组学、蛋白质基因组学和单细胞蛋白质组学等各个领域具有挑战性数据集的分析。在这篇综述中,我们总结了导致最近引入多种数据驱动重新评分管道的关键因素。我们概述了相关的后处理重新评分工具,介绍了各种应用的突出的数据驱动重新评分管道,并强调了该方法的局限性、机会和未来展望及其对基于质谱的蛋白质组学的影响。