Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
Munich Data Science Institute, Technical University of Munich, Garching, Germany.
Nat Commun. 2024 Jan 2;15(1):151. doi: 10.1038/s41467-023-44323-7.
Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.
与 DNA 和 RNA 不同,缺乏用于蛋白质的准确和高通量测序方法,这限制了蛋白质组学在序列未知的应用中的实用性,包括变体调用、新表位鉴定和宏蛋白质组学。我们介绍了 Spectralis,这是一种用于串联质谱的从头肽测序方法。Spectralis 利用了包括连接按氨基酸质量间隔的光谱中的峰的卷积神经网络层、将片段离子系列分类作为从头肽测序的关键任务以及肽-光谱置信得分等几项创新。在数据库搜索提供了真实情况的光谱上,Spectralis 在 90%的精度下超过了 40%的灵敏度,几乎将现有技术的灵敏度提高了一倍。对未识别光谱的应用证实了其优越性,并展示了其在变体调用中的适用性。总之,这些算法创新和高精度范围内的显著灵敏度提高是朝着广泛应用的肽测序迈出的重要一步。