文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Alkali cation-induced cathodic corrosion in Cu electrocatalysts.

作者信息

Liu Shikai, Li Yuheng, Wang Di, Xi Shibo, Xu Haoming, Wang Yulin, Li Xinzhe, Zang Wenjie, Liu Weidong, Su Mengyao, Yan Katherine, Nielander Adam C, Wong Andrew B, Lu Jiong, Jaramillo Thomas F, Wang Lei, Canepa Pieremanuele, He Qian

机构信息

Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, Singapore, 117575, Singapore.

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, E5 #02-29, Singapore, 117585, Singapore.

出版信息

Nat Commun. 2024 Jun 13;15(1):5080. doi: 10.1038/s41467-024-49492-7.


DOI:10.1038/s41467-024-49492-7
PMID:38871724
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11176167/
Abstract

The reconstruction of Cu catalysts during electrochemical reduction of CO is a widely known but poorly understood phenomenon. Herein, we examine the structural evolution of Cu nanocubes under CO reduction reaction and its relevant reaction conditions using identical location transmission electron microscopy, cyclic voltammetry, in situ X-ray absorption fine structure spectroscopy and ab initio molecular dynamics simulation. Our results suggest that Cu catalysts reconstruct via a hitherto unexplored yet critical pathway - alkali cation-induced cathodic corrosion, when the electrode potential is more negative than an onset value (e.g., -0.4 V when using 0.1 M KHCO). Having alkali cations in the electrolyte is critical for such a process. Consequently, Cu catalysts will inevitably undergo surface reconstructions during a typical process of CO reduction reaction, resulting in dynamic catalyst morphologies. While having these reconstructions does not necessarily preclude stable electrocatalytic reactions, they will indeed prohibit long-term selectivity and activity enhancement by controlling the morphology of Cu pre-catalysts. Alternatively, by operating Cu catalysts at less negative potentials in the CO electrochemical reduction, we show that Cu nanocubes can provide a much more stable selectivity advantage over spherical Cu nanoparticles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/e01bb1f1b0a9/41467_2024_49492_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/c96d1d7815c5/41467_2024_49492_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/11bbf758d88f/41467_2024_49492_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/ceda8d1f82b8/41467_2024_49492_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/c8c2cc36f092/41467_2024_49492_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/4d5d4e91ecbd/41467_2024_49492_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/33801ee1065d/41467_2024_49492_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/e01bb1f1b0a9/41467_2024_49492_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/c96d1d7815c5/41467_2024_49492_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/11bbf758d88f/41467_2024_49492_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/ceda8d1f82b8/41467_2024_49492_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/c8c2cc36f092/41467_2024_49492_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/4d5d4e91ecbd/41467_2024_49492_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/33801ee1065d/41467_2024_49492_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d17/11176167/e01bb1f1b0a9/41467_2024_49492_Fig7_HTML.jpg

相似文献

[1]
Alkali cation-induced cathodic corrosion in Cu electrocatalysts.

Nat Commun. 2024-6-13

[2]
Studies of Copper-Based CO Reduction Electrocatalysts by Scanning Transmission Soft X-ray Microscopy.

ACS Nano. 2023-11-14

[3]
CO Intermediate-Assisted Dynamic Cu Sintering During Electrocatalytic CO Reduction on Cu-N-C Catalysts.

Angew Chem Int Ed Engl. 2024-6-3

[4]
Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO reduction using nanofocused X-ray probes.

Nat Commun. 2023-11-29

[5]
Assessment of the Degradation Mechanisms of Cu Electrodes during the CO Reduction Reaction.

ACS Appl Mater Interfaces. 2023-6-28

[6]
Oxidation State and Surface Reconstruction of Cu under CO Reduction Conditions from X-ray Characterization.

J Am Chem Soc. 2021-1-20

[7]
Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopy.

J Am Chem Soc. 2022-8-31

[8]
Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO Reduction to Ethylene.

J Am Chem Soc. 2020-2-12

[9]
Comparative Spectroscopic Study Revealing Why the CO Electroreduction Selectivity Switches from CO to HCOO at Cu-Sn- and Cu-In-Based Catalysts.

ACS Catal. 2022-12-16

[10]
Potential-Dependent Morphology of Copper Catalysts During CO Electroreduction Revealed by In Situ Atomic Force Microscopy.

Angew Chem Int Ed Engl. 2021-2-1

引用本文的文献

[1]
Dynamic Relocation of Copper Catalysts in Gas Diffusion Electrodes during CO Electroreduction.

J Am Chem Soc. 2025-7-9

[2]
Atomic Layered ZnO Between Cu Nanoparticles and a PVP Polymer Layer Enable Exceptional Selectivity and Stability in Electrocatalytic CO Reduction to CH.

Adv Sci (Weinh). 2025-7

[3]
Excess Cations Alter *CO Intermediate Configuration and Product Selectivity of Cu in Acidic Electrochemical CO Reduction Reaction.

J Am Chem Soc. 2025-4-16

[4]
Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.

Innovation (Camb). 2025-1-17

[5]
Decoupling CO effects from electrochemistry: A mechanistic study of copper catalyst degradation.

iScience. 2025-1-20

[6]
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.

Adv Sci (Weinh). 2025-4

[7]
Advanced morphological control over Cu nanowires through a design of experiments approach.

Mater Adv. 2024-9-30

本文引用的文献

[1]
Molecular understanding of the critical role of alkali metal cations in initiating CO electroreduction on Cu(100) surface.

Nat Commun. 2024-1-19

[2]
Intermetallic Single-Atom Alloy In-Pd Bimetallene for Neutral Electrosynthesis of Ammonia from Nitrate.

J Am Chem Soc. 2023-6-28

[3]
Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO Reduction Reaction.

J Am Chem Soc. 2023-3-8

[4]
Operando studies reveal active Cu nanograins for CO electroreduction.

Nature. 2023-2

[5]
Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure Spectroscopic and Reactivity Investigations.

J Am Chem Soc. 2022-12-7

[6]
Electrochemical CO reduction to ethylene by ultrathin CuO nanoplate arrays.

Nat Commun. 2022-4-6

[7]
Revealing Elusive Intermediates of Platinum Cathodic Corrosion through DFT Simulations.

J Phys Chem Lett. 2022-4-7

[8]
The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO Reduction on Gold Electrodes.

J Am Chem Soc. 2022-2-2

[9]
Dynamic transformation of cubic copper catalysts during CO electroreduction and its impact on catalytic selectivity.

Nat Commun. 2021-11-18

[10]
C-C Coupling Is Unlikely to Be the Rate-Determining Step in the Formation of C Products in the Copper-Catalyzed Electrochemical Reduction of CO.

Angew Chem Int Ed Engl. 2022-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索