Grosse Philipp, Yoon Aram, Rettenmaier Clara, Herzog Antonia, Chee See Wee, Roldan Cuenya Beatriz
Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
Nat Commun. 2021 Nov 18;12(1):6736. doi: 10.1038/s41467-021-26743-5.
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C selectivity and stability.
为了合理设计用于能量转换应用的高效稳定催化剂,我们需要了解它们在反应条件下如何转变,并揭示其潜在的结构-性能关系。这对于用于二氧化碳电还原的催化剂尤为重要,因为产物选择性对催化剂结构敏感。在此,我们展示了实时电化学液体池透射电子显微镜研究,结果表明氧化亚铜立方体在反应过程中发生了重构。观察到固体立方体的破碎、新纳米颗粒的重新沉积、催化剂的脱离和催化剂的聚集是施加电位和时间的函数。通过使用具有不同初始尺寸和负载量的立方体,我们通过时间分辨扫描电子显微镜测量和产物分析进一步将这种动态形态与催化选择性相关联。这些比较研究揭示了纳米颗粒重新沉积和脱离对催化剂反应性的影响,以及重新沉积的纳米颗粒所产生的增加的表面金属负载量如何导致更高的C选择性和稳定性。