Mofidi Hamid
Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing 101408, China.
Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China.
Math Biosci Eng. 2024 May 24;21(5):6042-6076. doi: 10.3934/mbe.2024266.
This study investigated how permanent charges influence the dynamics of ionic channels. Using a quasi-one-dimensional classical Poisson-Nernst-Planck (PNP) model, we investigated the behavior of two distinct ion species-one positively charged and the other negatively charged. The spatial distribution of permanent charges was characterized by zero values at the channel ends and a constant charge $ Q_0 $ within the central region. By treating the classical PNP model as a boundary value problem (BVP) for a singularly perturbed system, the singular orbit of the BVP depended on $ Q_0 $ in a regular way. We therefore explored the solution space in the presence of a small permanent charge, uncovering a systematic dependence on this parameter. Our analysis employed a rigorous perturbation approach to reveal higher-order effects originating from the permanent charges. Through this investigation, we shed light on the intricate interplay among boundary conditions and permanent charges, providing insights into their impact on the behavior of ionic current, fluxes, and flux ratios. We derived the quadratic solutions in terms of permanent charge, which were notably more intricate compared to the linear solutions. Through computational tools, we investigated the impact of these quadratic solutions on fluxes, current-voltage relations, and flux ratios, conducting a thorough analysis of the results. These novel findings contributed to a deeper comprehension of ionic flow dynamics and hold potential implications for enhancing the design and optimization of ion channel-based technologies.
本研究调查了固定电荷如何影响离子通道的动力学。使用准一维经典泊松 - 能斯特 - 普朗克(PNP)模型,我们研究了两种不同离子种类的行为——一种带正电荷,另一种带负电荷。固定电荷的空间分布特征为在通道两端值为零,在中心区域有恒定电荷(Q_0)。通过将经典PNP模型视为奇异摄动系统的边值问题(BVP),BVP的奇异轨道以规则方式依赖于(Q_0)。因此,我们探索了存在小固定电荷时的解空间,揭示了对该参数的系统依赖性。我们的分析采用了严格的摄动方法来揭示源自固定电荷的高阶效应。通过这项研究,我们阐明了边界条件和固定电荷之间的复杂相互作用,深入了解了它们对离子电流、通量和通量比行为的影响。我们推导了关于固定电荷的二次解,与线性解相比,这些二次解明显更复杂。通过计算工具,我们研究了这些二次解对通量、电流 - 电压关系和通量比的影响,并对结果进行了全面分析。这些新发现有助于更深入地理解离子流动动力学,并对改进基于离子通道的技术的设计和优化具有潜在意义。