Suppr超能文献

单一构象离子通道中的通量、偶联和选择性。

Flux, coupling, and selectivity in ionic channels of one conformation.

作者信息

Chen D P, Eisenberg R S

机构信息

Department of Physiology, Rush Medical College, Chicago, Illinois 60612.

出版信息

Biophys J. 1993 Aug;65(2):727-46. doi: 10.1016/S0006-3495(93)81099-3.

Abstract

Ions crossing biological membranes are described as a concentration of charge flowing through a selective open channel of one conformation and analyzed by a combination of Poisson and Nernst-Planck equations and boundary conditions, called the PNP theory for short. The ion fluxes in this theory interact much as ion fluxes interact in biological channels and mediated transporters, provided the theoretical channel contains permanent charge and has selectivity created by (electro-chemical) resistance at its ends. Interaction occurs because the flux of different ionic species depends on the same electric field. That electric field is a variable, changing with experimental conditions because the screening (i.e., shielding) of the permanent charge within the channel changes with experimental conditions. For example, the screening of charge and the shape of the electric field depend on the concentration of all ionic species on both sides of the channel. As experimental interventions vary the screening, the electric field varies, and thus the flux of each ionic species varies conjointly, and is, in that sense, coupled. Interdependence and interaction are the rule, independence is the exception, in this channel.

摘要

穿过生物膜的离子被描述为通过一种构象的选择性开放通道流动的电荷浓度,并通过泊松方程和能斯特-普朗克方程以及边界条件的组合进行分析,简称为PNP理论。在该理论中,离子通量的相互作用方式与生物通道和介导转运体中的离子通量相互作用方式非常相似,前提是理论通道包含固定电荷,并且其两端具有由(电化学)电阻产生的选择性。相互作用的发生是因为不同离子种类的通量取决于相同的电场。该电场是一个变量,会随着实验条件而变化,因为通道内固定电荷的屏蔽(即遮蔽)会随着实验条件而改变。例如,电荷的屏蔽和电场的形状取决于通道两侧所有离子种类的浓度。随着实验干预改变屏蔽,电场会发生变化,因此每种离子种类的通量也会共同变化,从这个意义上说,它们是耦合的。在这个通道中,相互依存和相互作用是常态,独立是例外。

相似文献

1
Flux, coupling, and selectivity in ionic channels of one conformation.
Biophys J. 1993 Aug;65(2):727-46. doi: 10.1016/S0006-3495(93)81099-3.
2
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
3
Charges, currents, and potentials in ionic channels of one conformation.
Biophys J. 1993 May;64(5):1405-21. doi: 10.1016/S0006-3495(93)81507-8.
4
Hydrodynamic model of temperature change in open ionic channels.
Biophys J. 1995 Dec;69(6):2304-22. doi: 10.1016/S0006-3495(95)80101-3.
5
Physical descriptions of experimental selectivity measurements in ion channels.
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
6
Exact continuum solution for a channel that can be occupied by two ions.
Biophys J. 1987 Sep;52(3):455-66. doi: 10.1016/S0006-3495(87)83234-4.
7
Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
IEEE Trans Nanobioscience. 2005 Mar;4(1):81-93. doi: 10.1109/tnb.2004.842495.
8
General continuum theory for multiion channel. I. Theory.
Biophys J. 1991 Feb;59(2):271-7. doi: 10.1016/S0006-3495(91)82220-2.
9
Charge density identification in ion channels.
J Chem Phys. 2010 Dec 21;133(23):234113. doi: 10.1063/1.3518365.
10
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051912. doi: 10.1103/PhysRevE.70.051912. Epub 2004 Nov 23.

引用本文的文献

2
Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing.
Sci Rep. 2018 Jun 14;8(1):9097. doi: 10.1038/s41598-018-27517-8.
3
Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.
PLoS One. 2015 Oct 13;10(10):e0138679. doi: 10.1371/journal.pone.0138679. eCollection 2015.
4
Auxin-driven patterning with unidirectional fluxes.
J Exp Bot. 2015 Aug;66(16):5083-102. doi: 10.1093/jxb/erv262. Epub 2015 Jun 27.
5
Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification.
Front Cell Neurosci. 2014 Oct 15;8:324. doi: 10.3389/fncel.2014.00324. eCollection 2014.
6
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
7
Theory for polymer analysis using nanopore-based single-molecule mass spectrometry.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12080-5. doi: 10.1073/pnas.1002194107. Epub 2010 Jun 21.
8
Geometry-induced asymmetric diffusion.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9580-4. doi: 10.1073/pnas.0703280104. Epub 2007 May 23.
10
Conductance and permeability of the residual state of connexin43 gap junction channels.
J Gen Physiol. 2002 Feb;119(2):171-85. doi: 10.1085/jgp.119.2.171.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
The potassium permeability of a giant nerve fibre.
J Physiol. 1955 Apr 28;128(1):61-88. doi: 10.1113/jphysiol.1955.sp005291.
3
Active transport of cations in giant axons from Sepia and Loligo.
J Physiol. 1955 Apr 28;128(1):28-60. doi: 10.1113/jphysiol.1955.sp005290.
4
Sodium permeability in toad nerve and in squid nerve.
J Physiol. 1960 Jun;152(1):159-66. doi: 10.1113/jphysiol.1960.sp006477.
5
Ionic movements and electrical activity in giant nerve fibres.
Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1-37. doi: 10.1098/rspb.1958.0001.
6
Potassium movements in washed erythrocytes.
J Physiol. 1955 Sep 28;129(3):464-75. doi: 10.1113/jphysiol.1955.sp005371.
7
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
8
Pump and exchanger mechanisms in a model of smooth muscle.
Biophys Chem. 1993 Jan;45(3):253-72. doi: 10.1016/0301-4622(93)80007-6.
9
Potassium flux ratio in voltage-clamped squid giant axons.
J Gen Physiol. 1980 Jul;76(1):83-98. doi: 10.1085/jgp.76.1.83.
10
Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle.
Am J Physiol. 1981 Jul;241(1):C68-75. doi: 10.1152/ajpcell.1981.241.1.C68.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验