Suppr超能文献

单一构象离子通道中的通量、偶联和选择性。

Flux, coupling, and selectivity in ionic channels of one conformation.

作者信息

Chen D P, Eisenberg R S

机构信息

Department of Physiology, Rush Medical College, Chicago, Illinois 60612.

出版信息

Biophys J. 1993 Aug;65(2):727-46. doi: 10.1016/S0006-3495(93)81099-3.

Abstract

Ions crossing biological membranes are described as a concentration of charge flowing through a selective open channel of one conformation and analyzed by a combination of Poisson and Nernst-Planck equations and boundary conditions, called the PNP theory for short. The ion fluxes in this theory interact much as ion fluxes interact in biological channels and mediated transporters, provided the theoretical channel contains permanent charge and has selectivity created by (electro-chemical) resistance at its ends. Interaction occurs because the flux of different ionic species depends on the same electric field. That electric field is a variable, changing with experimental conditions because the screening (i.e., shielding) of the permanent charge within the channel changes with experimental conditions. For example, the screening of charge and the shape of the electric field depend on the concentration of all ionic species on both sides of the channel. As experimental interventions vary the screening, the electric field varies, and thus the flux of each ionic species varies conjointly, and is, in that sense, coupled. Interdependence and interaction are the rule, independence is the exception, in this channel.

摘要

穿过生物膜的离子被描述为通过一种构象的选择性开放通道流动的电荷浓度,并通过泊松方程和能斯特-普朗克方程以及边界条件的组合进行分析,简称为PNP理论。在该理论中,离子通量的相互作用方式与生物通道和介导转运体中的离子通量相互作用方式非常相似,前提是理论通道包含固定电荷,并且其两端具有由(电化学)电阻产生的选择性。相互作用的发生是因为不同离子种类的通量取决于相同的电场。该电场是一个变量,会随着实验条件而变化,因为通道内固定电荷的屏蔽(即遮蔽)会随着实验条件而改变。例如,电荷的屏蔽和电场的形状取决于通道两侧所有离子种类的浓度。随着实验干预改变屏蔽,电场会发生变化,因此每种离子种类的通量也会共同变化,从这个意义上说,它们是耦合的。在这个通道中,相互依存和相互作用是常态,独立是例外。

相似文献

5
Physical descriptions of experimental selectivity measurements in ion channels.离子通道实验选择性测量的物理描述。
Eur Biophys J. 2002 Oct;31(6):454-66. doi: 10.1007/s00249-002-0239-x. Epub 2002 Jul 16.
9
Charge density identification in ion channels.离子通道中的电荷密度鉴定。
J Chem Phys. 2010 Dec 21;133(23):234113. doi: 10.1063/1.3518365.
10
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.单离子通道电导的饱和:近反应场的阻断效应。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051912. doi: 10.1103/PhysRevE.70.051912. Epub 2004 Nov 23.

引用本文的文献

4
Auxin-driven patterning with unidirectional fluxes.生长素驱动的具有单向通量的模式形成。
J Exp Bot. 2015 Aug;66(16):5083-102. doi: 10.1093/jxb/erv262. Epub 2015 Jun 27.
6
Modeling and simulation of ion channels.离子通道的建模与模拟
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
7
8
Geometry-induced asymmetric diffusion.几何诱导的不对称扩散。
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9580-4. doi: 10.1073/pnas.0703280104. Epub 2007 May 23.

本文引用的文献

2
The potassium permeability of a giant nerve fibre.巨神经纤维的钾通透性。
J Physiol. 1955 Apr 28;128(1):61-88. doi: 10.1113/jphysiol.1955.sp005291.
4
Sodium permeability in toad nerve and in squid nerve.蟾蜍神经和鱿鱼神经中的钠通透性。
J Physiol. 1960 Jun;152(1):159-66. doi: 10.1113/jphysiol.1960.sp006477.
5
Ionic movements and electrical activity in giant nerve fibres.巨神经纤维中的离子运动与电活动。
Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1-37. doi: 10.1098/rspb.1958.0001.
6
Potassium movements in washed erythrocytes.洗涤红细胞中的钾离子转运
J Physiol. 1955 Sep 28;129(3):464-75. doi: 10.1113/jphysiol.1955.sp005371.
8
Pump and exchanger mechanisms in a model of smooth muscle.
Biophys Chem. 1993 Jan;45(3):253-72. doi: 10.1016/0301-4622(93)80007-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验