Suppr超能文献

人类脑电图中周期性放电的自动量化。

Automated quantification of periodic discharges in human electroencephalogram.

机构信息

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.

Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.

出版信息

Biomed Phys Eng Express. 2024 Sep 20;10(6). doi: 10.1088/2057-1976/ad6c53.

Abstract

Periodic discharges (PDs) are pathologic patterns of epileptiform discharges repeating at regular intervals, commonly detected in the human electroencephalogram (EEG) signals in patients who are critically ill. The frequency and spatial extent of PDs are associated with the tendency of PDs to cause brain injury, existing automated algorithms do not quantify the frequency and spatial extent of PDs. The present study presents an algorithm for quantifying frequency and spatial extent of PDs. The algorithm quantifies the evolution of these parameters within a short (10-14 second) window, with a focus on lateralized and generalized periodic discharges. We test our algorithm on 300 'easy', 300 'medium', and 240 'hard' examples (840 total epochs) of periodic discharges as quantified by interrater consensus from human experts when analyzing the given EEG epochs. We observe 95.0% agreement with a 95% confidence interval (CI) of [94.9%, 95.1%] between algorithm outputs with reviewer clincal judgement for easy examples, 92.0% agreement (95% CI [91.9%, 92.2%]) for medium examples, and 90.4% agreement (95% CI [90.3%, 90.6%]) for hard examples. The algorithm is also computationally efficient and is able to run in 0.385 ± 0.038 seconds for a single epoch using our provided implementation of the algorithm. The results demonstrate the algorithm's effectiveness in quantifying these discharges and provide a standardized and efficient approach for PD quantification as compared to existing manual approaches.

摘要

周期性放电(PDs)是指在患有重病的患者的人类脑电图(EEG)信号中以规则间隔重复出现的病理性癫痫样放电模式。PDs 的频率和空间范围与 PD 引起脑损伤的倾向有关,现有的自动化算法无法量化 PD 的频率和空间范围。本研究提出了一种量化 PD 频率和空间范围的算法。该算法在短(10-14 秒)窗口内量化这些参数的演变,重点关注侧化和广义周期性放电。我们在 300 个“简单”、300 个“中等”和 240 个“困难”的周期性放电示例(总计 840 个 EEG 时段)上测试了我们的算法,这些示例的周期性放电是由人类专家在分析给定 EEG 时段时的组内共识来量化的。我们观察到,对于简单示例,算法输出与审查者临床判断之间的一致性为 95.0%,置信区间为[94.9%,95.1%];对于中等示例,一致性为 92.0%(95%置信区间[91.9%,92.2%]);对于困难示例,一致性为 90.4%(95%置信区间[90.3%,90.6%])。该算法还具有计算效率,使用我们提供的算法实现,单个时段的运行时间为 0.385 ± 0.038 秒。结果表明,该算法在量化这些放电方面是有效的,并提供了一种标准化且高效的 PD 量化方法,与现有的手动方法相比。

相似文献

1
Automated quantification of periodic discharges in human electroencephalogram.
Biomed Phys Eng Express. 2024 Sep 20;10(6). doi: 10.1088/2057-1976/ad6c53.
2
What is the "L" in LPDs? Localized as well as lateralized.
Acta Neurol Scand. 2017 Aug;136(2):160-163. doi: 10.1111/ane.12730. Epub 2017 Jan 16.
3
The EEG Ictal-Interictal Continuum-A Metabolic Roar But a Whimper of a Functional Outcome.
Epilepsy Curr. 2019 Jul-Aug;19(4):234-236. doi: 10.1177/1535759719855968. Epub 2019 Jun 14.
4
Rapid annotation of interictal epileptiform discharges via template matching under Dynamic Time Warping.
J Neurosci Methods. 2016 Dec 1;274:179-190. doi: 10.1016/j.jneumeth.2016.02.025. Epub 2016 Mar 2.
5
"Ictal" lateralized periodic discharges.
Epilepsy Behav. 2014 Jul;36:165-70. doi: 10.1016/j.yebeh.2014.05.014. Epub 2014 Jun 13.
6
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.
8
Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.
Epilepsy Behav. 2015 Aug;49:286-9. doi: 10.1016/j.yebeh.2015.04.044. Epub 2015 May 15.

本文引用的文献

2
Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation.
Neurology. 2023 Apr 25;100(17):e1750-e1762. doi: 10.1212/WNL.0000000000207127. Epub 2023 Mar 6.
3
Treating Rhythmic and Periodic EEG Patterns in Comatose Survivors of Cardiac Arrest.
N Engl J Med. 2022 Feb 24;386(8):724-734. doi: 10.1056/NEJMoa2115998.
4
Lateralized periodic discharges frequency correlates with glucose metabolism.
Neurology. 2019 Feb 12;92(7):e670-e674. doi: 10.1212/WNL.0000000000006903. Epub 2019 Jan 11.
5
Automated Long-Term EEG Review: Fast and Precise Analysis in Critical Care Patients.
Front Neurol. 2018 Jun 19;9:454. doi: 10.3389/fneur.2018.00454. eCollection 2018.
6
7
10
Generalized periodic discharges in the critically ill: a case-control study of 200 patients.
Neurology. 2012 Nov 6;79(19):1951-60. doi: 10.1212/WNL.0b013e3182735cd7. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验