Suppr超能文献

通过单糖组成研究真菌细胞壁的进化:对与植物相互作用的真菌物种的洞察

Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants.

作者信息

Yugueros Sara I, Peláez Jorge, Stajich Jason E, Fuertes-Rabanal María, Sánchez-Vallet Andrea, Largo-Gosens Asier, Mélida Hugo

机构信息

Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain.

Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain.

出版信息

Cell Surf. 2024 May 25;11:100127. doi: 10.1016/j.tcsw.2024.100127. eCollection 2024 Jun.

Abstract

Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants. Our data revealed that chitin is the most characteristic component of the fungal cell wall, and was found to be in a higher proportion in the early divergent groups. The Mucoromycota species possess few glucans, but instead have other monosaccharides such as fucose and glucuronic acid that are almost exclusively found in their cell walls. Additionally, we observed that hexoses (glucose, mannose and galactose) accumulate in much higher proportions in species belonging to Dikarya. Our data demonstrate a clear relationship between phylogenetic position and fungal cell wall carbohydrate composition and lay the foundation for a better understanding of their evolution and their role in plant interactions.

摘要

每个真菌细胞都被包裹在细胞壁中,细胞壁对于细胞的生存能力、形态发生和致病性至关重要。关于真菌细胞壁组成的大多数知识都集中在子囊菌上,尤其是人类病原体,但对于早期分化的真菌类群,如虫霉门和毛霉门的物种,了解得要少得多。为了阐明真菌细胞壁的进化变化,我们研究了18个物种的细胞壁单糖组成,这些物种包括早期分化的真菌以及担子菌门和子囊菌门的物种,重点关注那些具有致病生活方式以及与植物相互作用的物种。我们的数据表明,几丁质是真菌细胞壁最具特征性的成分,并且在早期分化的类群中比例更高。毛霉门的物种葡聚糖含量很少,但含有其他单糖,如岩藻糖和葡萄糖醛酸,这些单糖几乎只存在于它们的细胞壁中。此外,我们观察到己糖(葡萄糖、甘露糖和半乳糖)在双核菌纲的物种中积累的比例要高得多。我们的数据表明了系统发育位置与真菌细胞壁碳水化合物组成之间的明确关系,为更好地理解它们的进化以及它们在与植物相互作用中的作用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/558d/11170279/85d6d6eb31a0/gr1.jpg

相似文献

1
Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants.
Cell Surf. 2024 May 25;11:100127. doi: 10.1016/j.tcsw.2024.100127. eCollection 2024 Jun.
3
Survey of Early-Diverging Lineages of Fungi Reveals Abundant and Diverse Mycoviruses.
mBio. 2020 Sep 8;11(5):e02027-20. doi: 10.1128/mBio.02027-20.
4
Subcellular structure and behaviour in fungal hyphae.
J Microsc. 2020 Nov;280(2):75-85. doi: 10.1111/jmi.12945. Epub 2020 Aug 19.
5
β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants.
Fungal Genet Biol. 2016 May;90:53-60. doi: 10.1016/j.fgb.2015.12.004. Epub 2015 Dec 10.
8
Conservation of Mannan Synthesis in Fungi of the Zygomycota and Ascomycota Reveals a Broad Diagnostic Target.
mSphere. 2018 May 2;3(3). doi: 10.1128/mSphere.00094-18. eCollection 2018 May-Jun.
9
The distribution and evolution of fungal symbioses in ancient lineages of land plants.
Mycorrhiza. 2020 Jan;30(1):23-49. doi: 10.1007/s00572-020-00938-y. Epub 2020 Mar 4.
10
Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi.
FEMS Yeast Res. 2010 May;10(3):225-43. doi: 10.1111/j.1567-1364.2009.00589.x. Epub 2009 Oct 15.

引用本文的文献

1
biocontrol potential of plant extract-based formulation against infection structures of along with lower non-target effects.
Front Microbiol. 2025 Apr 14;16:1569281. doi: 10.3389/fmicb.2025.1569281. eCollection 2025.
2
The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi.
Arch Microbiol. 2025 Feb 20;207(3):65. doi: 10.1007/s00203-025-04271-w.
3
Advances on cell wall biology: Highlights from the XVI Plant Cell Wall Meeting.
Cell Surf. 2024 Jul 6;12:100130. doi: 10.1016/j.tcsw.2024.100130. eCollection 2024 Dec.
5
Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants.
J Exp Bot. 2024 Dec 4;75(22):7337-7350. doi: 10.1093/jxb/erae368.

本文引用的文献

1
Top five unanswered questions in fungal cell surface research.
Cell Surf. 2023 Nov 3;10:100114. doi: 10.1016/j.tcsw.2023.100114. eCollection 2023 Dec 15.
3
Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned?
Microorganisms. 2023 Jul 18;11(7):1830. doi: 10.3390/microorganisms11071830.
4
Ending the (Cell) wall metaphor in microbiology.
Cell Surf. 2022 Nov 10;8:100087. doi: 10.1016/j.tcsw.2022.100087. eCollection 2022 Dec.
5
Architecture of the dynamic fungal cell wall.
Nat Rev Microbiol. 2023 Apr;21(4):248-259. doi: 10.1038/s41579-022-00796-9. Epub 2022 Oct 20.
6
Evolution of zygomycete secretomes and the origins of terrestrial fungal ecologies.
iScience. 2022 Aug 2;25(8):104840. doi: 10.1016/j.isci.2022.104840. eCollection 2022 Aug 19.
7
A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR.
Nat Commun. 2021 Nov 3;12(1):6346. doi: 10.1038/s41467-021-26749-z.
8
Molecular mechanisms of early plant pattern-triggered immune signaling.
Mol Cell. 2021 Sep 2;81(17):3449-3467. doi: 10.1016/j.molcel.2021.07.029. Epub 2021 Aug 16.
10
PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data.
Bioinformatics. 2021 Aug 25;37(16):2325-2331. doi: 10.1093/bioinformatics/btab096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验