Chanket Wannarat, Pipatthana Methinee, Sangphukieo Apiwat, Harnvoravongchai Phurt, Chankhamhaengdecha Surang, Janvilisri Tavan, Phanchana Matthew
Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand.
Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
Comput Struct Biotechnol J. 2024 May 21;23:2358-2374. doi: 10.1016/j.csbj.2024.05.027. eCollection 2024 Dec.
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in 630. Our analysis reveals that 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the -aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
继发性主动转运蛋白利用不同的电化学梯度将底物穿梭于真核生物和原核生物膜之间。它们被认为是病原体中的抗菌外排泵之一。虽然630基因组中的原发性主动转运蛋白已被完全编目,但对继发性主动转运蛋白的系统研究仍不完整。在这里,我们不仅鉴定了继发性主动转运蛋白,还揭示了它们在630中的进化及其在耐药性中的作用。我们的分析表明,630携带147个属于27个(超)家族的继发性主动转运蛋白。值得注意的是,其中50个(34%)可能与抗菌耐药性(AMR)有关。AMR继发性主动转运蛋白在结构上分为五个(超)家族:α-氨基苯甲酰谷氨酸转运蛋白(AbgT)、药物/代谢物转运蛋白(DMT)超家族、主要易化子(MFS)超家族、多药和有毒化合物外排(MATE)家族以及耐药-结瘤-分裂(RND)家族。令人惊讶的是,在630中发现的完整RND基因可能是与双膜菌共同祖先的进化遗留物。通过蛋白质结构比较,我们可能从DMT、MATE和MFS(超)家族中鉴定出了六个新的AMR继发性主动转运蛋白。全基因组分析表明,一半的AMR继发性转运蛋白是辅助基因,这表明它们在适应性AMR功能而非先天性生理稳态中起重要作用。基因表达谱有力地支持了它们对多种抗生素作出反应的能力。我们的研究结果突出了AMR继发性主动转运蛋白的进化及其在抗生素反应中的不可或缺的作用。这标志着AMR继发性主动转运蛋白是与其他抗生素活性协同作用的有趣治疗靶点。