Liverpool Centre for Cardiovascular Science University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital Liverpool UK.
Department of Cardiovascular and Metabolic Medicine Institute of Life Course and Medical Sciences, University of Liverpool Liverpool UK.
J Am Heart Assoc. 2024 Jun 18;13(12):e033298. doi: 10.1161/JAHA.123.033298. Epub 2024 Jun 14.
Enhanced detection of large vessel occlusion (LVO) through machine learning (ML) for acute ischemic stroke appears promising. This systematic review explored the capabilities of ML models compared with prehospital stroke scales for LVO prediction.
Six bibliographic databases were searched from inception until October 10, 2023. Meta-analyses pooled the model performance using area under the curve (AUC), sensitivity, specificity, and summary receiver operating characteristic curve. Of 1544 studies screened, 8 retrospective studies were eligible, including 32 prehospital stroke scales and 21 ML models. Of the 9 prehospital scales meta-analyzed, the Rapid Arterial Occlusion Evaluation had the highest pooled AUC (0.82 [95% CI, 0.79-0.84]). Support Vector Machine achieved the highest AUC of 9 ML models included (pooled AUC, 0.89 [95% CI, 0.88-0.89]). Six prehospital stroke scales and 10 ML models were eligible for summary receiver operating characteristic analysis. Pooled sensitivity and specificity for any prehospital stroke scale were 0.72 (95% CI, 0.68-0.75) and 0.77 (95% CI, 0.72-0.81), respectively; summary receiver operating characteristic curve AUC was 0.80 (95% CI, 0.76-0.83). Pooled sensitivity for any ML model for LVO was 0.73 (95% CI, 0.64-0.79), specificity was 0.85 (95% CI, 0.80-0.89), and summary receiver operating characteristic curve AUC was 0.87 (95% CI, 0.83-0.89).
Both prehospital stroke scales and ML models demonstrated varying accuracies in predicting LVO. Despite ML potential for improved LVO detection in the prehospital setting, application remains limited by the absence of prospective external validation, limited sample sizes, and lack of real-world performance data in a prehospital setting.
通过机器学习(ML)增强对急性缺血性脑卒中的大血管闭塞(LVO)的检测似乎很有前景。本系统评价探讨了 ML 模型与院前卒中量表相比预测 LVO 的能力。
从建库到 2023 年 10 月 10 日,检索了 6 个文献数据库。使用曲线下面积(AUC)、敏感度、特异度和汇总受试者工作特征曲线对模型性能进行荟萃分析。在筛选出的 1544 项研究中,有 8 项回顾性研究符合条件,包括 32 项院前卒中量表和 21 项 ML 模型。在 9 项进行荟萃分析的院前量表中,快速动脉闭塞评估的 AUC 最高(0.82[95%CI,0.79-0.84])。纳入的 9 项 ML 模型中,支持向量机的 AUC 最高(汇总 AUC,0.89[95%CI,0.88-0.89])。有 6 项院前卒中量表和 10 项 ML 模型符合汇总受试者工作特征分析的条件。任何院前卒中量表的汇总敏感度和特异度分别为 0.72(95%CI,0.68-0.75)和 0.77(95%CI,0.72-0.81);汇总受试者工作特征曲线 AUC 为 0.80(95%CI,0.76-0.83)。任何 ML 模型预测 LVO 的汇总敏感度为 0.73(95%CI,0.64-0.79),特异度为 0.85(95%CI,0.80-0.89),汇总受试者工作特征曲线 AUC 为 0.87(95%CI,0.83-0.89)。
院前卒中量表和 ML 模型在预测 LVO 方面均具有不同的准确性。尽管 ML 具有提高院前环境中 LVO 检测的潜力,但由于缺乏前瞻性外部验证、样本量有限以及缺乏真实环境中的性能数据,其应用仍然受到限制。