Suppr超能文献

基于机器学习的院前卒中诊断算法:一项前瞻性观察研究。

A prehospital diagnostic algorithm for strokes using machine learning: a prospective observational study.

机构信息

Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan.

Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.

出版信息

Sci Rep. 2021 Oct 15;11(1):20519. doi: 10.1038/s41598-021-99828-2.

Abstract

High precision is optimal in prehospital diagnostic algorithms for strokes and large vessel occlusions. We hypothesized that prehospital diagnostic algorithms for strokes and their subcategories using machine learning could have high predictive value. Consecutive adult patients with suspected stroke as per emergency medical service personnel were enrolled in a prospective multicenter observational study in 12 hospitals in Japan. Five diagnostic algorithms using machine learning, including logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting, were evaluated for stroke and subcategories including acute ischemic stroke with/without large vessel occlusions, intracranial hemorrhage, and subarachnoid hemorrhage. Of the 1446 patients in the analysis, 1156 (80%) were randomly included in the training (derivation) cohort and cohorts, and 290 (20%) were included in the test (validation) cohort. In the diagnostic algorithms for strokes using eXtreme Gradient Boosting had the highest diagnostic value (test data, area under the receiver operating curve 0.980). In the diagnostic algorithms for the subcategories using eXtreme Gradient Boosting had a high predictive value (test data, area under the receiver operating curve, acute ischemic stroke with/without large vessel occlusions 0.898/0.882, intracranial hemorrhage 0.866, subarachnoid hemorrhage 0.926). Prehospital diagnostic algorithms using machine learning had high predictive value for strokes and their subcategories.

摘要

高精准度是针对中风和大血管闭塞的院前诊断算法的最优选择。我们假设,使用机器学习的中风及其亚类的院前诊断算法具有较高的预测价值。本前瞻性多中心观察性研究共纳入了日本 12 家医院的连续成年疑似中风患者。研究评估了 5 种基于机器学习的诊断算法,包括逻辑回归、随机森林、支持向量机和极端梯度提升,用于中风及其亚类(包括伴有/不伴有大血管闭塞的急性缺血性中风、颅内出血和蛛网膜下腔出血)的诊断。在纳入分析的 1446 例患者中,1156 例(80%)被随机纳入训练(推导)队列和队列,290 例(20%)纳入测试(验证)队列。在使用极端梯度提升的中风诊断算法中,具有最高的诊断价值(测试数据,接受者操作特征曲线下面积 0.980)。在使用极端梯度提升的中风亚类诊断算法中,具有较高的预测价值(测试数据,接受者操作特征曲线下面积,伴有/不伴有大血管闭塞的急性缺血性中风 0.898/0.882、颅内出血 0.866、蛛网膜下腔出血 0.926)。使用机器学习的院前诊断算法对中风及其亚类具有较高的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/539c/8521587/2af5f305d07d/41598_2021_99828_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验