Suppr超能文献

识别高危多发性骨髓瘤患者:一种使用克隆基因特征的新方法。

Identifying high-risk multiple myeloma patients: A novel approach using a clonal gene signature.

机构信息

Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA.

Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Int J Cancer. 2024 Nov 1;155(9):1684-1695. doi: 10.1002/ijc.35057. Epub 2024 Jun 14.

Abstract

Multiple myeloma (MM) is a heterogeneous disease with a small subset of high-risk patients having poor prognoses. Identifying these patients is crucial for treatment management and strategic decisions. In this study, we developed a novel computational framework to define prognostic gene signatures by selecting genes with expression driven by clonal copy number alterations. We applied this framework to MM and developed a clonal gene signature (CGS) consisting of 22 genes and evaluated in five independent datasets. The CGS provided significant prognostic values after adjusting for well-established factors including cytogenetic abnormalities, International Staging System (ISS), and Revised ISS (R-ISS). Importantly, CGS demonstrated higher performance in identifying high-risk patients compared to the GEP70 and SKY92 signatures recommended for prognostic stratification of MM. CGS can further stratify patients into subgroups with significantly differential prognoses when applied to the high- and low-risk groups identified by GEP70 and SKY92. Additionally, CGS scores are significantly associated with patient response to dexamethasone, a commonly used treatment for MM. In summary, we proposed a computational framework that requires only gene expression data to identify CGSs for prognosis prediction. CGS provides a useful biomarker for improving prognostic stratification in MM, especially for identifying the highest-risk patients.

摘要

多发性骨髓瘤(MM)是一种异质性疾病,其中一小部分高危患者预后较差。识别这些患者对于治疗管理和战略决策至关重要。在这项研究中,我们开发了一种新的计算框架,通过选择受克隆拷贝数改变驱动表达的基因来定义预后基因特征。我们将该框架应用于 MM,并开发了一个由 22 个基因组成的克隆基因特征(CGS),并在五个独立的数据集中进行了评估。CGS 在调整了包括细胞遗传学异常、国际分期系统(ISS)和修订的 ISS(R-ISS)在内的既定因素后,提供了显著的预后价值。重要的是,与推荐用于 MM 预后分层的 GEP70 和 SKY92 特征相比,CGS 在识别高危患者方面表现出更高的性能。CGS 可进一步将患者分为具有显著不同预后的亚组,当应用于 GEP70 和 SKY92 确定的高低危组时。此外,CGS 评分与患者对地塞米松的反应显著相关,地塞米松是 MM 的常用治疗方法。总之,我们提出了一种仅需要基因表达数据即可识别用于预后预测的 CGS 的计算框架。CGS 为改善 MM 的预后分层提供了一个有用的生物标志物,特别是用于识别最高危患者。

相似文献

本文引用的文献

1
The Gene Ontology knowledgebase in 2023.2023 版基因本体论知识库。
Genetics. 2023 May 4;224(1). doi: 10.1093/genetics/iyad031.
7
The reactome pathway knowledgebase 2022.反应体通路知识库2022版。
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.
8
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.clusterProfiler 4.0:用于解释组学数据的通用富集工具。
Innovation (Camb). 2021 Jul 1;2(3):100141. doi: 10.1016/j.xinn.2021.100141. eCollection 2021 Aug 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验