Suppr超能文献

用于预测多发性骨髓瘤预后的组蛋白修饰相关基因特征的鉴定与验证

Identification and validation of a histone modification-related gene signature to predict the prognosis of multiple myeloma.

作者信息

Lyu Juan, Lyu Shanmei, Qian Ying, Feng Yi, Zheng Zhuan, Zhang Lihong

机构信息

Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.

出版信息

Front Genet. 2025 Aug 28;16:1613631. doi: 10.3389/fgene.2025.1613631. eCollection 2025.

Abstract

BACKGROUND

Multiple myeloma (MM) is an incurable plasma cell malignancy with high heterogeneity. Current staging systems, including the International Staging System (ISS) and Revised ISS (R-ISS), have limited prognostic accuracy. Given the role of histone modifications in MM progression, we developed a histone modification-related (HMR) prognostic model to improve MM risk stratification.

METHODS

Gene expression and mutation data were downloaded from the Gene Expression Omnibus database and the Cancer Genome Atlas. Prognostic HMR-related genes were identified through a combination of univariate Cox regression, least absolute shrinkage and selection operator Cox regression, and random survival forest analysis. The genes identified were then used to construct the HMR risk score model using multivariate Cox regression. The model was validated using Kaplan-Meier survival, time-dependent receiver operating characteristic curves analysis. A nomogram combining the HMR score with clinical features was developed. Functional enrichment, immune infiltration, somatic mutation, and drug sensitivity analysis were conducted to explore the biological relevance of the model.

RESULTS

Seven HMR genes with prognostic significance were identified. The HMR risk score stratified patients into high-risk and low-risk groups, with significant survival differences. The model demonstrated favorable predictive performance, and was shown to be an independent prognostic factor. The nomogram showed good calibration and discriminative ability, offering a practical tool for individual patient risk assessment. Functional analysis revealed that the HMR risk score is associated with dysregulated cell cycle progression, proliferation, and immunosuppression in MM, which may contribute to disease progression and drug resistance. Moreover, drug sensitivity analysis indicated potential associations between the HMR score and response to specific therapeutic agents, highlighting its potential role in guiding personalized treatment.

CONCLUSION

We developed an HMR gene signature that has potential for prognostic prediction and may help guide personalized treatment strategies in MM.

摘要

背景

多发性骨髓瘤(MM)是一种无法治愈的浆细胞恶性肿瘤,具有高度异质性。目前的分期系统,包括国际分期系统(ISS)和修订后的ISS(R-ISS),预后准确性有限。鉴于组蛋白修饰在MM进展中的作用,我们开发了一种与组蛋白修饰相关(HMR)的预后模型,以改善MM的风险分层。

方法

从基因表达综合数据库和癌症基因组图谱下载基因表达和突变数据。通过单变量Cox回归、最小绝对收缩和选择算子Cox回归以及随机生存森林分析相结合的方法,确定与预后相关的HMR基因。然后使用多变量Cox回归,将鉴定出的基因用于构建HMR风险评分模型。使用Kaplan-Meier生存分析、时间依赖性受试者工作特征曲线分析对该模型进行验证。开发了一种将HMR评分与临床特征相结合的列线图。进行功能富集、免疫浸润、体细胞突变和药物敏感性分析,以探索该模型的生物学相关性。

结果

鉴定出7个具有预后意义的HMR基因。HMR风险评分将患者分为高风险和低风险组,生存差异显著。该模型显示出良好的预测性能,并被证明是一个独立的预后因素。列线图显示出良好的校准和判别能力,为个体患者风险评估提供了一个实用工具。功能分析表明,HMR风险评分与MM中细胞周期进程失调、增殖和免疫抑制有关,这可能导致疾病进展和耐药。此外,药物敏感性分析表明HMR评分与对特定治疗药物的反应之间存在潜在关联,突出了其在指导个性化治疗中的潜在作用。

结论

我们开发了一种HMR基因特征,具有预后预测潜力,可能有助于指导MM的个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f9/12422906/32fec0fdee3f/fgene-16-1613631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验