Suppr超能文献

使用文献计量学数据定义和理解麻醉学中的出版网络公平性。

Using Bibliometric Data to Define and Understand Publishing Network Equity in Anesthesiology.

机构信息

From the Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.

Dana Health Sciences Library, University of Vermont Larner College of Medicine, Burlington, Vermont.

出版信息

Anesth Analg. 2024 Nov 1;139(5):944-954. doi: 10.1213/ANE.0000000000006877. Epub 2024 Jun 12.

Abstract

BACKGROUND

Anesthesiology departments and professional organizations increasingly recognize the need to embrace diverse membership to effectively care for patients, to educate our trainees, and to contribute to innovative research. 1 Bibliometric analysis uses citation data to determine the patterns of interrelatedness within a scientific community. Social network analysis examines these patterns to elucidate the network's functional properties. Using these methodologies, an analysis of contemporary scholarly work was undertaken to outline network structure and function, with particular focus on the equity of node and graph-level connectivity patterns.

METHODS

Using the Web of Science, this study examines bibliographic data from 6 anesthesiology-specific journals between January 1, 2017, and August 26, 2022. The final data represent 4453 articles, 19,916 independent authors, and 4436 institutions. Analysis of coauthorship was performed using R libraries software. Collaboration patterns were assessed at the node and graph level to analyze patterns of coauthorship. Influential authors and institutions were identified using centrality metrics; author influence was also cataloged by the number of publications and highly cited papers. Independent assessors reviewed influential author photographs to classify race and gender. The Gini coefficient was applied to examine dispersion of influence across nodes. Pearson correlations were used to investigate the relationship between centrality metrics, number of publications, and National Institutes of Health (NIH) funding.

RESULTS

The modularity of the author network is significantly higher than would be predicted by chance (0.886 vs random network mean 0.340, P < .01), signifying strong community formation. The Gini coefficient indicates inequity across both author and institution centrality metrics, representing moderate to high disparity in node influence. Identifying the top 30 authors by centrality metrics, number of published and highly cited papers, 79.0% were categorized as male; 68.1% of authors were classified as White (non-Latino) and 24.6% Asian.

CONCLUSIONS

The highly modular network structure indicates dense author communities. Extracommunity cooperation is limited, previously demonstrated to negatively impact novel scientific work. 2 , 3 Inequitable node influence is seen at both author and institution level, notably an imbalance of information transfer and disparity in connectivity patterns. There is an association between network influence, article publication (authors), and NIH funding (institutions). Female and minority authors are inequitably represented among the most influential authors. This baseline bibliometric analysis provides an opportunity to direct future network connections to more inclusively share information and integrate diverse perspectives, properties associated with increased academic productivity. 3 , 4.

摘要

背景

麻醉学系和专业组织越来越认识到需要吸纳多元化的成员,以便有效地为患者提供护理,为我们的学员提供教育,并为创新研究做出贡献。1 文献计量分析利用引文数据来确定科学共同体内部相互关系的模式。社会网络分析则研究这些模式,以阐明网络的功能特性。本研究采用这些方法,对当代学术工作进行了分析,概述了网络结构和功能,特别关注节点和图级连接模式的公平性。

方法

本研究使用 Web of Science,对 2017 年 1 月 1 日至 2022 年 8 月 26 日期间的 6 种麻醉学专业期刊的书目数据进行了分析。最终数据代表了 4453 篇文章、19916 位独立作者和 4436 个机构。使用 R 库软件对合著进行了分析。在节点和图层面上评估合作模式,以分析合著模式。使用中心度指标识别有影响力的作者和机构;作者影响力还通过出版物数量和高引论文数量进行了分类。独立评估者审查有影响力作者的照片,以对其种族和性别进行分类。基尼系数用于检验节点之间影响力的分布情况。皮尔逊相关系数用于研究中心度指标、出版物数量和美国国立卫生研究院(NIH)资助之间的关系。

结果

作者网络的模块性明显高于随机网络的平均水平(0.886 对随机网络均值 0.340,P<.01),表明存在强烈的社区形成。基尼系数表明,作者和机构的中心度指标都存在不公平现象,代表节点影响力存在中度到高度差异。根据中心度指标、发表论文和高引论文数量,确定前 30 位作者,其中 79.0%为男性;68.1%的作者被归类为白人(非拉丁裔),24.6%为亚洲人。

结论

高度模块化的网络结构表明作者社区密集。社区外的合作受到限制,先前的研究表明这会对新的科学工作产生负面影响。2、3 节点影响力的不公平现象在作者和机构层面都存在,特别是信息传递的不平衡和连接模式的差异。网络影响力、文章发表(作者)和美国国立卫生研究院(机构)资助之间存在关联。女性和少数族裔作者在最有影响力的作者中代表性不足。本基线文献计量分析为指导未来的网络联系提供了机会,以便更具包容性地分享信息并整合多样化的观点,这与提高学术生产力的特性相关。3、4。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验